Field axioms and proofs

samrmay

August 2023

Contents

1 Binary operators 1
1.1 Definitions 1
1.2 Theorems about binary operators 2
2 Fields 4
2.1 Consequences of field axioms 5

1 Binary operators

1.1 Definitions

To get to the field axioms and consequences, we first define and characterize binary operators on sets.

Definition 1.1 For set F, call operator \circ a binary operator if it takes the form

$$
\begin{equation*}
\circ: F \times F \rightarrow F \tag{1}
\end{equation*}
$$

Definition 1.2 For set F and binary operator \circ, call \circ associative if $\forall x, y, z \in$ F,

$$
\begin{equation*}
(x \circ y) \circ z=x \circ(y \circ z) \tag{2}
\end{equation*}
$$

and call \circ commutative if $\forall x, y \in F$,

$$
\begin{equation*}
x \circ y=y \circ x \tag{3}
\end{equation*}
$$

A word on notation. For binary operator \circ we use $x \circ y$ to mean $\circ(x, y)$ because it is more familiar. Then $x \circ y \circ z$ is technically ill-defined, but practically allowed when \circ is associative and commutative.

Definition 1.3 For set F and binary operator \circ, if there is an element $x_{0} \in F$ s.t. $\forall y \in F$,

$$
\begin{equation*}
x_{0} \circ y=y \circ x_{0}=y \tag{4}
\end{equation*}
$$

Call x_{0} an identity of \circ in F.
Definition 1.4 For element $x \in F$ and binary operator \circ on F, if there is an element y s.t.

$$
\begin{equation*}
x \circ y=y \circ x=x_{0} \tag{5}
\end{equation*}
$$

where x_{0} is an identity of \circ, call y the inverse of x (with respect to \circ)

1.2 Theorems about binary operators

Note that in Defn. 1.3 and 1.4, we did not assume these elements were unique in F or for element x respectively. Here, we show that this is always the case. For all of the below assume a set F and binary operator \circ on F.

Theorem 1.5 Uniqueness of binary identity
If $x_{1}, x_{2} \in F$ are identities of \circ, then

$$
\begin{equation*}
x_{1}=x_{2} \tag{6}
\end{equation*}
$$

Ie. there is a unique identity element in F, generally denoted $\mathbb{1}$.
Pf.

$$
\begin{align*}
x_{1} & =x_{1} \circ x_{2} \tag{7}\\
x_{1} \circ x_{2} & =x_{2} \tag{8}
\end{align*}
$$

Since both x_{1}, x_{2} are identities. Therefore $x_{1}=x_{2}$.
Theorem 1.6 Uniqueness of inverse
For element $x \in F$, if $y_{1}, y_{2} \in F$ are both inverses of x wrt an associative \circ, then

$$
\begin{equation*}
y_{1}=y_{2} \tag{9}
\end{equation*}
$$

Ie. the inverse of x is unique and generally denoted x^{-1}.
Pf.

$$
\begin{align*}
x \circ y_{1} & =x \circ y_{2}=\mathbb{1} \tag{10}\\
y_{1} \circ\left(x \circ y_{1}\right) & =y_{1} \circ\left(x \circ y_{2}\right) \tag{11}\\
\left(y_{1} \circ x\right) \circ y_{1} & =\left(y_{1} \circ x\right) \circ y_{2} \tag{12}\\
\mathbb{1} \circ y_{1} & =\mathbb{1} \circ y_{2} \tag{13}\\
y_{1} & =y_{2} \tag{14}
\end{align*}
$$

Where we used the fact that \circ is associative explicitly
This proof hints at a more general "cancellation law" for associative binary operators.

Theorem 1.7 Cancellation laws
For $x, y, z \in F$ and associative binary operator \circ,

$$
\begin{align*}
& x \circ z=y \circ z \Longleftrightarrow x=y \tag{15}\\
& z \circ x=z \circ y \Longleftrightarrow x=y \tag{16}
\end{align*}
$$

Pf.
Need to prove four different statements:
$x \circ z=y \circ z \Longrightarrow x=y$

$$
\begin{align*}
x \circ z & =y \circ z \tag{17}\\
(x \circ z) \circ z^{-1} & =(y \circ z) \circ z^{-1} \tag{18}\\
x \circ\left(z \circ z^{-1}\right) & =y \circ\left(z \circ z^{-1}\right) \tag{19}\\
x \circ \mathbb{1} & =y \circ \mathbb{1} \tag{20}\\
x & =y \tag{21}
\end{align*}
$$

$x=y \Longrightarrow x \circ z=y \circ z$ follows directly by substitution.
Similarly for the left case,
$z \circ x=z \circ y \Longrightarrow x=y$

$$
\begin{align*}
z \circ x & =z \circ y \tag{22}\\
\left(z^{-1} \circ z\right) \circ x & =\left(z^{-1} \circ z\right) \circ y \tag{23}\\
x & =y \tag{24}
\end{align*}
$$

and $x=y \Longrightarrow z \circ x=z \circ y$ similarly follows directly by substitution.
We can also make some statements about inverses
Theorem 1.8 Double inverse law
For $\forall f \in F$ and associative binary operator \circ,

$$
\begin{equation*}
\left(f^{-1}\right)^{-1}=f \tag{25}
\end{equation*}
$$

where f^{-1} is the inverse of f wrt \circ. Ie. the inverse of the inverse of f is itself. Pf.

By definition of the inverse,

$$
\begin{align*}
f^{-1} \circ\left(f^{-1}\right)^{-1} & =\mathbb{1} \tag{26}\\
f \circ\left(f^{-1} \circ\left(f^{-1}\right)^{-1}\right) & =f \circ \mathbb{1} \tag{27}\\
\left(f \circ f^{-1}\right) \circ\left(f^{-1}\right)^{-1} & =f \tag{28}\\
\mathbb{1} \circ\left(f^{-1}\right)^{-1} & =f \tag{29}\\
\left(f^{-1}\right)^{-1} & =f \tag{30}
\end{align*}
$$

2 Fields

Define a field $\mathcal{F}=(F,+, \cdot)$ as a set F together with two binary operations:

$$
\begin{align*}
& +: F \times F \rightarrow F \tag{31}\\
& \cdot: F \times F \rightarrow F \tag{32}
\end{align*}
$$

called addition and multiplication respectively, which have the following 9 properties. As above, we take $x+y$ to denote $+(x, y)$. Do not be fooled by the familiarity! These,$+ \cdot$ are arbitrary operators and not necessarily familiar addition and multiplication on real numbers. See examples below.

For all below properties, assume a triple $(F,+, \cdot)$
Property $2.1+$ is associative
Ie. $\forall x, y, z \in F$,

$$
\begin{equation*}
(x+y)+z=x+(y+z) \tag{33}
\end{equation*}
$$

Property 2.2 Additive identity
There exists an element $0_{\mathcal{F}} \in F$ s.t. $\forall f \in F$

$$
\begin{equation*}
f+0_{\mathcal{F}}=0_{\mathcal{F}}+f=f \tag{34}
\end{equation*}
$$

By Thm.1.5, $0_{\mathcal{F}}$ is unique. We also denote simply as 0 where the field is unambiguous.

Property 2.3 Additive inverse
$\forall f \in F, \exists-f \in F$ s.t.

$$
\begin{equation*}
f+(-f)=(-f)+f=1 \tag{35}
\end{equation*}
$$

By Thm. 1.6, $-f$ is unique for each $f \in F$.
Property 2.4 - is associative
Ie. $\forall x, y, z \in F$

$$
\begin{equation*}
(x \cdot y) \cdot z=x \cdot(y \cdot z) \tag{36}
\end{equation*}
$$

Property 2.5 - is commutative
Ie. $\forall x, y \in F$,

$$
\begin{equation*}
x \cdot y=y \cdot x \tag{37}
\end{equation*}
$$

Property 2.6 Multiplicative identity
There exists an element in $F 1_{\mathcal{F}}$ s.t. $\forall f \in F$

$$
\begin{equation*}
f \cdot 1_{\mathcal{F}}=1_{\mathcal{F}} \cdot f=f \tag{38}
\end{equation*}
$$

By Thm. 1.5, $1_{\mathcal{F}}$ is unique. We denote also by 1 where the field is unambiguous.
Property 2.7 Multiplicative inverse
$\forall f \in F \backslash\{0\}, \exists f^{-1} \in F$ s.t.

$$
\begin{equation*}
f \cdot f^{-1}=f^{-1} \cdot f=1 \tag{39}
\end{equation*}
$$

By Thm. 1.6, f^{-1} is unique. Note also that we do not assume 0 does not have an inverse, we simply do not assume that it does.

Property 2.8 Distributivity across addition
$\forall f_{1}, f_{2}, f_{3} \in F$

$$
\begin{equation*}
f_{1} \cdot\left(f_{2}+f_{3}\right)=\left(f_{1} \cdot f_{2}\right)+\left(f_{1} \cdot f_{3}\right) \tag{40}
\end{equation*}
$$

Property 2.9 Zero-One law
The multiplicative and additive inverses for a triple $\mathcal{F}=(F,+, \cdot)$ are distinct. Ie. $0_{\mathcal{F}} \neq \mathbb{1}_{\mathcal{F}}$

2.1 Consequences of field axioms

Many intuitive properties of "normal" numbers, such as commutativity of addition, are not axioms but follow directly. Again, assume an arbitrary field $\mathcal{F}=(F,+, \cdot)$
Theorem 2.10 + is commutative Ie. $\forall x, y \in F$,

$$
\begin{equation*}
x+y=y+x \tag{41}
\end{equation*}
$$

Pf. By commutativity of multiplication,

$$
\begin{equation*}
(1+x) \cdot(1+y)=(1+y) \cdot(1+x) \tag{42}
\end{equation*}
$$

By distributivity across addition,

$$
\begin{align*}
((1+x) \cdot 1)+((1+x) \cdot y) & =((1+y) \cdot 1)+((1+y) \cdot x) \tag{44}\\
((1 \cdot 1)+(x \cdot 1))+((1 \cdot y)+(x \cdot y)) & =((1 \cdot 1)+(y \cdot 1))+((1 \cdot x)+(y \cdot x)) \tag{45}
\end{align*}
$$

$$
\begin{equation*}
(1+x)+(y+(x \cdot y))=(1+y)+(x+(x \cdot y)) \tag{46}
\end{equation*}
$$

By cancellation laws (Thm. 1.7), associativity of addition, and commutativity of multiplication,

$$
\begin{align*}
1+((x+y)+(x \cdot y)) & =1+((y+x)+(y \cdot x)) \tag{47}\\
(x+y)+(x \cdot y) & =(y+x)+(x \cdot y) \tag{48}\\
x+y & =y+x \tag{49}
\end{align*}
$$

Other properties, like multiplication by 0 and -1 are also consequences:
Theorem $2.11 \forall f \in F$,

$$
\begin{equation*}
0 \cdot f=0 \tag{50}
\end{equation*}
$$

Pf.

$$
\begin{align*}
f & =f \tag{51}\\
1 \cdot f & =f \tag{52}\\
(1+0) \cdot f & =f \tag{53}\\
(1 \cdot f)+(0 \cdot f) & =f+0 \tag{54}\\
f+(0 \cdot f) & =f+0 \tag{55}\\
0 \cdot f & =0 \tag{56}
\end{align*}
$$

Where we used cancellation law in the last line.
Theorem $2.12 \forall f \in F$,

$$
\begin{equation*}
-1 \cdot f=-f \tag{57}
\end{equation*}
$$

Pf. By the above theorem and since -1 is the additive inverse of 1 ,

$$
\begin{align*}
0 \cdot f & =0 \tag{58}\\
(1+(-1)) \cdot f & =0 \tag{59}\\
(1 \cdot f)+(-1 \cdot f) & =0 \tag{60}\\
f+(-1 \cdot f) & =0 \tag{61}
\end{align*}
$$

Then $-1 \cdot f$ is the additive inverse of f by definition.

