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1 Notation/Definition cheat sheet

Definition 1.1 Let M(n,F) denote the set of n× n matrices over field F.

Specifically, let M(n,R) denote the set of real n× n matrices and M(n,C) the
set of complex n× n matrices.

Definition 1.2 Let In ∈ M(n,F) be the matrix s.t. for all matrices A in
M(n,F),
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InA = AIn = A (1)

Call this matrix the identity matrix. When n and F are unambiguous or arbi-
trary, denote the identity matrix as simply I.

1.1 Matrix Operations

Definition 1.3 For matrix A ∈ M(n,F) with elements aij, let AT be the
transpose of A defined by [AT ]ij = aji. Equivalently,

AT =


a11 a12 ... a1n
a21 a22 ... a2n
...

...
. . .

...
an1 an2 ... ann


T

=


a11 a21 ... an1
a12 a22 ... an2
...

...
. . .

...
a1n a2n ... ann

 (2)

Definition 1.4 For A ∈ M(n,C) with elements aij, define A as the conjugate
of A defined by the map

aij 7→ a∗ij (3)

ie. take the complex conjugate of each element.

Definition 1.5 For A ∈ M(n,C), define A† as the Hermitian conjugate (or
conjugate transpose) of A defined by

A† = (A)T = AT (4)

Equivalently defined by the map

aij 7→ a∗ji (5)

Definition 1.6 For matrices A,B ∈ M(n,F), let [A,B] be the commutator of
A and B defined by

[A,B] = AB −BA (6)

Similarly, let {A,B} be the anti–commutator of A and B defined by

{A,B} = AB +BA (7)

We say A and B commute iff

[A,B] = 0 ⇐⇒ AB = BA (8)

and say A and B anti–commute iff

{A,B} = 0 ⇐⇒ AB = −BA (9)
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Definition 1.7 For matrix A ∈ M(n,F), let Tr[A] be the trace of A defined by

Tr[A] =

n∑
i

aii (10)

ie. the sum of diagonal elements of A.

1.2 Matrix Properties

Definition 1.8 For A ∈ M(n,R), say A is symmetric iff

A = AT (11)

and say A is anti–symmetric or skew–symmetric iff

A = −AT (12)

Definition 1.9 For A ∈ M(n,C), say A is Hermitian iff

A = A† (13)

and say A is anti–Hermitian or skew–Hermitian iff

A = −A† (14)

Definition 1.10 Say A ∈ M(n,F) with elements aij is diagonal iff aij =
0 ∀ i ̸= j. Ie. A has off-diagonal elements of only 0.

Definition 1.11 Say A ∈ M(n,F) is invertible iff ∃ a unique matrix A−1 s.t.

AA−1 = A−1A = I (15)

If such an A−1 exists, call it the inverse of A.

Definition 1.12 Say A ∈ M(n,R) is orthogonal iff A is invertible and

A−1 = AT (16)

ie. the inverse of A is also its transpose.

Definition 1.13 For A ∈ M(n,C), say A is unitary iff A is invertible and

A† = A−1 (17)

ie. the inverse of A is also its Hermitian conjugate.

Definition 1.14 For A ∈ M(n,R), say A is diagonalizable iff ∃ orthogonal
matrix S and diagonal matrix D s.t.

A = SDST (18)

For A ∈ M(n,C), call A diagonalizable if ∃ unitary S and diagonal D s.t.

A = SDS† (19)
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1.3 Vectors

We will need a notion of vectors and vector notation to describe some matrix
properties.

Definition 1.15 Let an n × 1 matrix be called a column vector and a 1 × n
matrix be called a row vector.

Definition 1.16 For real n-dimensional column vectors u and v, define u ·v as
the dot product defined as

u · v = uT v =

n∑
i

uivi (20)

where ui, vi are the ith elements of u and v respectively.

Similarly, for complex n-dimensional u and v, define the dot product as

u · v = u†v =

n∑
i

u∗
i vi (21)

Remark 1.17 Note that the above dot product is a specific case of the inner product
(denoted ⟨u, v⟩) which, along with a vector space, defines an inner product space.

1.4 Basis

Definition 1.18 Say two vectors v and u are linearly independent iff

⟨v, u⟩ = 0 (22)

Say set of vectors {v1, v2, ..., vn} is linearly independent if for all i ̸= j, vi and
vj are linearly independent.

Definition 1.19 For set of vectors V = {v1, v2, ..., vk} over field F , let the
span of V (denoted Sp[V ]) be the set of linear combinations of vectors in V , ie.

Sp[V ] = {c1v1 + c2v2 + ...+ ckvk | ci ∈ F} (23)

Definition 1.20 For a set of vectors V , say B = {b1, ..., bk} forms a basis of
V iff

1. B is linearly independent

2. Sp[B] = V

Additionally, define the dimension of V as the cardinality of a basis of V .

1.5 Eigenvectors/Eigenvalues

TODO
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1.6 Misc.

Sometimes, it is convenient to represent a matrix by its rows or columns:

A =


−−− r1 −−−
−−− r2 −−−

...
−−− rn −−−

 =


| | |
| | |
c1 c2 ... cn
| | |
| | |

 (24)

where ri = (ai1, ai2, ..., ain) and cj = (a1j , a2j , ..., anj). Sometimes we use the
notation ai∗ = (ai1, ai2, ..., ain) for rows and a∗j = (a1j , a2j , ..., anj) for columns.

2 Operator properties

2.1 Transpose

Definition given in Defn. 1.3. For the following, assume A,B ∈ M(n,F) and
c ∈ F

Property 2.1 Matrix transpose is distributive over addition and scalar multi-
plication

Pf.

(A+ cB)T = (

a11 ... a1n
...

. . .
...

an1 ... ann

+

cb11 ... cb1n
...

. . .
...

cbn1 ... cbnn

)T (25)

=

a11 + cb11 ... a1n + cb1n
...

. . .
...

an1 + cbn1 ... ann + cbnn


T

(26)

=

a11 + cb11 ... an1 + cbn1
...

. . .
...

a1n + cb1n ... ann + cbnn

 (27)

=

a11 ... an1
...

. . .
...

a1n ... ann

+ c

b11 ... bn1
...

. . .
...

b1n ... bnn

 (28)

= AT + cBT (29)

Property 2.2 (AB)T = BTAT

5



Pf.

(AB)T = (


... a1 ...
... a2 ...

...
... an ...




| | |
| | |
b1 b2 ... bn
| | |
| | |

)T (30)

=


a1 · b1 a1 · b2 ... a1 · bn
a2 · b1 a2 · b2 ... a2 · bn

...
...

. . .
...

an · b1 an · b2 ... an · bn


T

(31)

=


a1 · b1 a2 · b1 ... an · b1
a1 · b2 a2 · b2 ... an · b2

...
...

. . .
...

a1 · bn a2 · bn ... an · bn

 (32)

=


... b1 ...
... b2 ...

...
... bn ...




| | |
| | |
a1 a2 ... an
| | |
| | |

 (33)

= BTAT (34)

where bi, ai are denoting row and column vectors as appropriate (should prob-
ably make this more rigorous in fact).

2.2 Conjugate

Definition given in Defn. 1.4.

Property 2.3 Matrix conjugate is distributive over addition and scalar multi-
plication

Pf.
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A+ cB =


a11 + cb11 a12 + cb12 ... a1n + cb1n
a21 + cb21 a22 + cb22 ... a2n + cb2n

...
...

. . .
...

an1 + cbn1 an2 + cbn2 ... ann + cbnn

 (35)

=


a11 + cb11 a12 + cb12 ... a1n + cb1n
a21 + cb21 a22 + cb22 ... a2n + cb2n

...
...

. . .
...

an1 + cbn1 an2 + cbn2 ... ann + cbnn

 (36)

=


a11 + cb11 a12 + cb12 ... a1n + cb1n
a21 + cb21 a22 + cb22 ... a2n+ cb2n

...
...

. . .
...

an1 + cbn1 an2 + cbn2 ... ann + cbnn

 (37)

= A+ c∗B (38)

where in Eq. 37 we use the fact that the complex conjugate distributes over
addition and multiplication.

2.3 Hermitian Conjugate

Definition given in Defn. 1.5.

Corollary 2.4 For A,B ∈ M(n,C), c ∈ C, (A+ cB)† = A† + c∗B†

Pf.

(A+ cB)† = (A+ cb)T (39)

= AT + cBT (40)

= AT + cBT (41)

= A† + c∗B† (42)

2.4 Commutator

Definition in Defn. 1.6

Property 2.5 For all matrices A,B,

[A,B] = AB −BA = −(BA−AB) = −[B,A] (43)

Property 2.6 Commutator is a billinear form, ie.

[λ(A1 +A2), B] = λ[A1, B] + λ[A2, B] (44)

[A, λ(B1 +B2)] = λ[A,B1] + λ[A,B2] (45)
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Pf.

[λ(A1 +A2), B] = λ(A1 +A2)B −Bλ(A1 +A2) (46)

= λ(A1B −BA1) + λ(A2B −BA2) (47)

= λ[A1, B] + λ[A2, B] (48)

By Prop. 2.5, this also applies to A, λ(B1 +B2).

Property 2.7 For matrices A,B,

[A2, B] = A[A,B] + [A,B]A (49)

In general,

[An, B] =

n−1∑
j=0

Aj [A,B]An−j−1 (50)

Pf. TODO

Similarly,

Property 2.8 For matrices A,B,C s.t. [A,B] = [A,C] = 0

[A,BC] = 0 (51)

Ie. if a matrix A commutes with two matrices B,C, it also commutes with the
product BC.

Pf.

[A,BC] = ABC −BCA (52)

= ABC −BAC +BAC −BCA (53)

= (AB −BA)C +B(AC − CA) (54)

= [A,B]C +B[A,C] (55)

= 0 (56)

2.5 Trace

Definition given in Defn. 1.7.

Property 2.9 Trace is distributive over addition and scalar multiplication

Pf.
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For A,B ∈ M(n,F),

Tr[A+ cB] = Tr[


a11 + cb11 a12 + cb12 ... a1n + cb1n
a21 + cb21 a22 + cb22 ... a2n + cb2n

...
...

. . .
...

an1 + cbn1 an2 + cbn2 ... ann + cbnn

] (57)

= (a11 + cb11) + (a22 + cb22) + ...+ (ann + cbnn (58)

= (a11 + a22 + ...+ ann) + c(b11 + b22 + ...+ bnn) (59)

= Tr[A] + cTr[B] (60)

Property 2.10 Trace is invariant to transpose

Pf.

Tr[AT ] =

n∑
i

[AT ]ii =

n∑
i

[A]ii = Tr[A] (61)

Property 2.11 Trace is invariant to cyclic permutation. Ie. for any matrices
A,B,C ∈ M(n,F),

Tr[ABC] = Tr[CAB] = Tr[BCA] (62)

This is known as the cyclic property of the trace and is general for any number
of products.

Pf.

Consider the trace of k products. The general case of k = n can be proven with
just k = 2.

Base case (k = 2):

Let A,B be matrices in M(n,F) s.t. A has rows ai∗ and columns a∗j . Similarly
B has rows bi∗ and columns b∗j . Ie.,

A =


... a1∗ ...
... a2∗ ...

...
... an∗ ...

 =


| | |
| | |

a∗1 a∗2 ... a∗n
| | |
| | |

 (63)

B =


... b1∗ ...
... b2∗ ...

...
... bn∗ ...

 =


| | |
| | |

b∗1 b∗2 ... b∗n
| | |
| | |

 (64)

(65)
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Then,

Tr[AB] = Tr[


... a1∗ ...
... a2∗ ...

...
... an∗ ...




| | |
| | |

b∗1 b∗2 ... b∗n
| | |
| | |

] (66)

= Tr[


a1∗ · b∗1 a1∗ · b∗2 ... a1∗ · b∗n
a2∗ · b∗1 a2∗ · b∗2 ... a2∗ · b∗n

...
...

. . .
...

an∗ · b∗1 an∗ · b∗2 ... an∗ · b∗n

] (67)

=

n∑
i

ai∗ · b∗i =
n∑
i

n∑
j

aijbji (68)

=

n∑
j

n∑
i

bjiaij =

n∑
j

bj∗ · a∗j (69)

= Tr[


b1∗ · a∗1 b1∗ · a∗2 ... b1∗ · a∗n
b2∗ · a∗1 b2∗ · a∗2 ... b2∗ · a∗n

...
...

. . .
...

bn∗ · a∗1 bn∗ · a∗2 ... bn∗ · a∗n

] (70)

= Tr[


... b1∗ ...
... b2∗ ...

...
... bn∗ ...




| | |
| | |

a∗1 a∗2 ... a∗n
| | |
| | |

] (71)

= Tr[BA] (72)

Illustrative case: (k = 3)

Tr[ABC] = Tr[(AB)C] = Tr[C(AB)] (73)

= Tr[CAB] = Tr[(CA)B] = Tr[B(CA)]

= Tr[BCA]

10



General case: (k = n)

Tr[A1A2...An−1An] = Tr[A1(A2...An−1An)] = Tr[(A2...An−1An)A1] (74)

= Tr[A2...An−1AnA1]

= ...

= Tr[AiAi+1...A1A2...An−1An...Ai−2Ai−1]

= Tr[(AiAi+1...A1A2...An−1An...Ai−2)Ai−1]

= Tr[Ai−1(AiAi+1...A1A2...An−1An...Ai−2)]

= Tr[Ai−1AiAi+1...A1A2...An−1An...Ai−2]

= ...

Corollary 2.12 Trace is invariant to change of basis.

Pf.

Tr[U†AU ] = Tr[UU†A] = Tr[A] for unitary U by Prop 2.11.

3 Symmetric matrix properties

Definition 3.1 Let S(n) ⊂ M(n,R) denote the set of symmetric real n × n
matrices (as defined in Defn. 1.8).

Property 3.2 S(n) is closed under addition and scalar multiplication.

Pf.

For A,B ∈ S(n),

(A+ cB)T = AT + cBT = A+ cB (75)

Property 3.3 For symmetric A,B, their product AB ∈ S(n) ⇐⇒ AB = BA

Pf.

AB ∈ S(n) =⇒ AB = BA

AB = (AB)T = BTAT = BA (76)

AB ∈ S(n) ⇐= AB = BA

(AB)T = BTAT = BA = AB (77)

Corollary 3.4 For m ∈ Z, if A∈ S(n), then Am ∈ S(n)

Pf.

Follows directly from Prop. 3.3 and the fact that a matrix commutes with itself.
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4 Anti-symmetric/skew-symmetric matrix prop-
erties

Definition 4.1 Let SS(n) denote the set of skew-symmetric real n×n matrices
(as defined in Defn. 1.8.

For the following properties, assume A,B ∈ SS(n)

Property 4.2 SS(n) closed under addition and scalar multiplication.

Pf.

(A+ cB)T = AT + cBT = −A− cB = −(A+ cB) (78)

5 Orthogonal matrix properties

TODO

6 Hermitian matrices

Definition 6.1 Let H(n) ⊂ M(n,C) denote the set of Hermitian n×n matrices
(as defined in 1.9).

Property 6.2 H(n) closed under addition

Pf. For A,B ∈ H(n),

(A+B)† = A† +B† = (A+B) (79)

by 2.4

Key result for quantum mechanics:

Property 6.3 If A is Hermitian, then A has real eigenvalues

Pf.

Let λi be the ith eigenvalue of A with eigenvector vi. For convenience, assume
the eigenvectors are normalized to 1 (vi · vi = v†i vi = 1). Then,

Avi = λivi (80)

v†iAvi = λiv
†
i vi (81)

v†iAvi = λi (82)
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Taking the hermitian conjugate of Eq. 80,

v†iA
† = λ∗

i v
†
i (83)

v†iA
†vi = λ∗

i v
†
i vi (84)

v†iAvi = λ∗
i (85)

Subtracting Eqs. 82 and 85,

0 = λi − λ∗
i (86)

= Re[λi] + Im[λi]i− (Re[λi]− Im[λi]i) (87)

= 2Im[λi] (88)

Then each of λi are purely real, since Imλi = 0.

Property 6.4 If A, B are two Hermitian matrices, then the commutator [A,B]
of A and B is skew-Hermitian

Pf.

[A,B] = AB −BA (89)

= (BA)† − (AB)† (90)

= (BA−AB)† (91)

= [B,A]† = −[A,B]† (92)

where we’ve used the trivial property of the commutator that for any matrices
A,B, the following is true: [A,B] = AB −BA = −(BA−AB) = −[B,A].
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