# Useful facts about square matrices 

samrmay

March 2023

## Contents

1 Notation/Definition cheat sheet ..... 1
1.1 Matrix Operations ..... 2
1.2 Matrix Properties ..... 3
1.3 Vectors ..... 4
1.4 Basis ..... 4
1.5 Eigenvectors/Eigenvalues ..... 4
1.6 Misc ..... 5
2 Operator properties ..... 5
2.1 Transpose ..... 5
2.2 Conjugate ..... 6
2.3 Hermitian Conjugate ..... 7
2.4 Commutator ..... 7
2.5 Trace ..... 8
3 Symmetric matrix properties ..... 11
4 Anti-symmetric/skew-symmetric matrix properties ..... 12
5 Orthogonal matrix properties ..... 12
6 Hermitian matrices ..... 12

## 1 Notation/Definition cheat sheet

Definition 1.1 Let $\mathbf{M}(n, \mathbb{F})$ denote the set of $n \times n$ matrices over field $\mathbb{F}$.
Specifically, let $\mathbf{M}(n, \mathbb{R})$ denote the set of real $n \times n$ matrices and $\mathbf{M}(n, \mathbb{C})$ the set of complex $n \times n$ matrices.

Definition 1.2 Let $I_{n} \in \mathbf{M}(n, \mathbb{F})$ be the matrix s.t. for all matrices $A$ in $\mathbf{M}(n, \mathbb{F})$,

$$
\begin{equation*}
I_{n} A=A I_{n}=A \tag{1}
\end{equation*}
$$

Call this matrix the identity matrix. When $n$ and $\mathbb{F}$ are unambiguous or arbitrary, denote the identity matrix as simply $I$.

### 1.1 Matrix Operations

Definition 1.3 For matrix $A \in \mathbf{M}(n, \mathbb{F})$ with elements $a_{i j}$, let $A^{T}$ be the $\underline{\text { transpose }}$ of $A$ defined by $\left[A^{T}\right]_{i j}=a_{j i}$. Equivalently,

$$
A^{T}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n}  \tag{2}\\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)^{T}=\left(\begin{array}{cccc}
a_{11} & a_{21} & \ldots & a_{n 1} \\
a_{12} & a_{22} & \ldots & a_{n 2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 n} & a_{2 n} & \ldots & a_{n n}
\end{array}\right)
$$

Definition 1.4 For $A \in \mathbf{M}(n, \mathbb{C})$ with elements $a_{i j}$, define $\bar{A}$ as the conjugate of $A$ defined by the map

$$
\begin{equation*}
a_{i j} \mapsto a_{i j}^{*} \tag{3}
\end{equation*}
$$

ie. take the complex conjugate of each element.
Definition 1.5 For $A \in \mathbf{M}(n, \mathbb{C})$, define $A^{\dagger}$ as the Hermitian conjugate (or conjugate transpose) of $A$ defined by

$$
\begin{equation*}
A^{\dagger}=(\bar{A})^{T}=\overline{A^{T}} \tag{4}
\end{equation*}
$$

Equivalently defined by the map

$$
\begin{equation*}
a_{i j} \mapsto a_{j i}^{*} \tag{5}
\end{equation*}
$$

Definition 1.6 For matrices $A, B \in \mathbf{M}(n, \mathbb{F})$, let $[A, B]$ be the commutator of $A$ and $B$ defined by

$$
\begin{equation*}
[A, B]=A B-B A \tag{6}
\end{equation*}
$$

Similarly, let $\{A, B\}$ be the anti-commutator of $A$ and $B$ defined by

$$
\begin{equation*}
\{A, B\}=A B+B A \tag{7}
\end{equation*}
$$

We say $A$ and $B$ commute iff

$$
\begin{equation*}
[A, B]=0 \Longleftrightarrow A B=B A \tag{8}
\end{equation*}
$$

and say $A$ and $B$ anti-commute iff

$$
\begin{equation*}
\{A, B\}=0 \Longleftrightarrow A B=-B A \tag{9}
\end{equation*}
$$

Definition 1.7 For matrix $A \in \mathbf{M}(n, \mathbb{F})$, let $\operatorname{Tr}[A]$ be the trace of $A$ defined by

$$
\begin{equation*}
\operatorname{Tr}[A]=\sum_{i}^{n} a_{i i} \tag{10}
\end{equation*}
$$

ie. the sum of diagonal elements of $A$.

### 1.2 Matrix Properties

Definition 1.8 For $A \in \mathbf{M}(n, \mathbb{R})$, say $A$ is symmetric iff

$$
\begin{equation*}
A=A^{T} \tag{11}
\end{equation*}
$$

and say $A$ is anti-symmetric or skew-symmetric iff

$$
\begin{equation*}
A=-A^{T} \tag{12}
\end{equation*}
$$

Definition 1.9 For $A \in \mathbf{M}(n, \mathbb{C})$, say $A$ is Hermitian iff

$$
\begin{equation*}
A=A^{\dagger} \tag{13}
\end{equation*}
$$

and say $A$ is anti-Hermitian or skew-Hermitian iff

$$
\begin{equation*}
A=-A^{\dagger} \tag{14}
\end{equation*}
$$

Definition 1.10 Say $A \in \mathbf{M}(n, \mathbb{F})$ with elements $a_{i j}$ is diagonal iff $a_{i j}=$ $0 \forall i \neq j$. Ie. A has off-diagonal elements of only 0 .

Definition 1.11 Say $A \in \mathbf{M}(n, \mathbb{F})$ is invertible iff $\exists$ a unique matrix $A^{-1}$ s.t.

$$
\begin{equation*}
A A^{-1}=A^{-1} A=I \tag{15}
\end{equation*}
$$

If such an $A^{-1}$ exists, call it the inverse of $A$.
Definition 1.12 Say $A \in \mathbf{M}(n, \mathbb{R})$ is orthogonal iff $A$ is invertible and

$$
\begin{equation*}
A^{-1}=A^{T} \tag{16}
\end{equation*}
$$

ie. the inverse of $A$ is also its transpose.
Definition 1.13 For $A \in \mathbf{M}(n, \mathbb{C})$, say $A$ is unitary iff $A$ is invertible and

$$
\begin{equation*}
A^{\dagger}=A^{-1} \tag{17}
\end{equation*}
$$

ie. the inverse of $A$ is also its Hermitian conjugate.
Definition 1.14 For $A \in \mathbf{M}(n, \mathbb{R})$, say $A$ is diagonalizable iff $\exists$ orthogonal matrix $S$ and diagonal matrix $D$ s.t.

$$
\begin{equation*}
A=S D S^{T} \tag{18}
\end{equation*}
$$

For $A \in \mathbf{M}(n, \mathbb{C})$, call $A$ diagonalizable if $\exists$ unitary $S$ and diagonal $D$ s.t.

$$
\begin{equation*}
A=S D S^{\dagger} \tag{19}
\end{equation*}
$$

### 1.3 Vectors

We will need a notion of vectors and vector notation to describe some matrix properties.

Definition 1.15 Let an $n \times 1$ matrix be called a column vector and a $1 \times n$ matrix be called a row vector.

Definition 1.16 For real n-dimensional column vectors $u$ and $v$, define $u \cdot v$ as the dot product defined as

$$
\begin{equation*}
u \cdot v=u^{T} v=\sum_{i}^{n} u_{i} v_{i} \tag{20}
\end{equation*}
$$

where $u_{i}, v_{i}$ are the $i^{\text {th }}$ elements of $u$ and $v$ respectively.
Similarly, for complex $n$-dimensional $u$ and $v$, define the dot product as

$$
\begin{equation*}
u \cdot v=u^{\dagger} v=\sum_{i}^{n} u_{i}^{*} v_{i} \tag{21}
\end{equation*}
$$

Remark 1.17 Note that the above dot product is a specific case of the inner product (denoted $\langle u, v\rangle$ ) which, along with a vector space, defines an inner product space.

### 1.4 Basis

Definition 1.18 Say two vectors $v$ and $u$ are linearly independent iff

$$
\begin{equation*}
\langle v, u\rangle=0 \tag{22}
\end{equation*}
$$

Say set of vectors $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is linearly independent if for all $i \neq j, v_{i}$ and $v_{j}$ are linearly independent.
Definition 1.19 For set of vectors $V=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ over field $F$, let the span of $V$ (denoted $S p[V]$ ) be the set of linear combinations of vectors in $V$, ie.

$$
\begin{equation*}
S p[V]=\left\{c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{k} v_{k} \mid c_{i} \in F\right\} \tag{23}
\end{equation*}
$$

Definition 1.20 For a set of vectors $V$, say $B=\left\{b_{1}, \ldots, b_{k}\right\}$ forms a basis of Viff

1. $B$ is linearly independent
2. $S p[B]=V$

Additionally, define the dimension of $V$ as the cardinality of a basis of $V$.

### 1.5 Eigenvectors/Eigenvalues

TODO

### 1.6 Misc.

Sometimes, it is convenient to represent a matrix by its rows or columns:

$$
A=\left(\begin{array}{ccc}
--- & r_{1} & ---  \tag{24}\\
--- & r_{2} & --- \\
& \vdots & \\
--- & r_{n} & ----
\end{array}\right)=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
\mid & \mid & & \mid \\
c_{1} & c_{2} & \ldots & c_{n} \\
\mid & \mid & & \mid \\
\mid & \mid & & \mid
\end{array}\right)
$$

where $r_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)$ and $c_{j}=\left(a_{1 j}, a_{2 j}, \ldots, a_{n j}\right)$. Sometimes we use the notation $a_{i *}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)$ for rows and $a_{* j}=\left(a_{1 j}, a_{2 j}, \ldots, a_{n j}\right)$ for columns.

## 2 Operator properties

### 2.1 Transpose

Definition given in Defn. 1.3. For the following, assume $A, B \in \mathbf{M}(n, \mathbb{F})$ and $c \in \mathbb{F}$

Property 2.1 Matrix transpose is distributive over addition and scalar multiplication

Pf.

$$
\begin{align*}
(A+c B)^{T} & =\left(\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right)+\left(\begin{array}{ccc}
c b_{11} & \ldots & c b_{1 n} \\
\vdots & \ddots & \vdots \\
c b_{n 1} & \ldots & c b_{n n}
\end{array}\right)\right)^{T}  \tag{25}\\
& =\left(\begin{array}{ccc}
a_{11}+c b_{11} & \ldots & a_{1 n}+c b_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1}+c b_{n 1} & \ldots & a_{n n}+c b_{n n}
\end{array}\right)  \tag{26}\\
& =\left(\begin{array}{ccc}
a_{11}+c b_{11} & \ldots & a_{n 1}+c b_{n 1} \\
\vdots & \ddots & \vdots \\
a_{1 n}+c b_{1 n} & \ldots & a_{n n}+c b_{n n}
\end{array}\right)  \tag{27}\\
& =\left(\begin{array}{ccc}
a_{1} 1 & \ldots & a_{n 1} \\
\vdots & \ddots & \vdots \\
a_{1 n} & \ldots & a_{n n}
\end{array}\right)+c\left(\begin{array}{ccc}
b_{11} & \ldots & b_{n 1} \\
\vdots & \ddots & \vdots \\
b_{1 n} & \ldots & b_{n n}
\end{array}\right)  \tag{28}\\
& =A^{T}+c B^{T} \tag{29}
\end{align*}
$$

Property $2.2(A B)^{T}=B^{T} A^{T}$

Pf.

$$
\begin{align*}
(A B)^{T} & =\left(\left(\begin{array}{ccc}
\ldots & a_{1} & \ldots \\
\ldots & a_{2} & \ldots \\
& \vdots & \\
\ldots & a_{n} & \ldots
\end{array}\right)\left(\begin{array}{cccc}
\mid & \mid & \mid \\
b_{1} & b_{2} & \ldots & b_{n} \\
\mid & \mid & \mid
\end{array}\right)\right)^{T}  \tag{30}\\
& =\left(\begin{array}{cccc}
a_{1} \cdot b_{1} & a_{1} \cdot b_{2} & \ldots & a_{1} \cdot b_{n} \\
a_{2} \cdot b_{1} & a_{2} \cdot b_{2} & \ldots & a_{2} \cdot b_{n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n} \cdot b_{1} & a_{n} \cdot b_{2} & \ldots & a_{n} \cdot b_{n}
\end{array}\right)  \tag{31}\\
& =\left(\begin{array}{cccc}
a_{1} \cdot b_{1} & a_{2} \cdot b_{1} & \ldots & a_{n} \cdot b_{1} \\
a_{1} \cdot b_{2} & a_{2} \cdot b_{2} & \ldots & a_{n} \cdot b_{2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1} \cdot b_{n} & a_{2} \cdot b_{n} & \ldots & a_{n} \cdot b_{n}
\end{array}\right)  \tag{32}\\
& =\left(\begin{array}{ccc}
\ldots & b_{1} & \ldots \\
\ldots & b_{2} & \ldots \\
\vdots \\
\mid & \mid & \mid \\
a_{1} & a_{2} & \ldots \\
\mid & a_{n} \\
\mid & b_{n} & \ldots
\end{array}\right)  \tag{33}\\
& =B^{T} A^{T} \tag{34}
\end{align*}
$$

where $b_{i}, a_{i}$ are denoting row and column vectors as appropriate (should probably make this more rigorous in fact).

### 2.2 Conjugate

Definition given in Defn. 1.4.
Property 2.3 Matrix conjugate is distributive over addition and scalar multiplication

Pf.

$$
\begin{align*}
\overline{A+c B} & =\left(\begin{array}{cccc}
a_{11}+c b_{11} & a_{12}+c b_{12} & \ldots & a_{1 n}+c b_{1 n} \\
a_{21}+c b_{21} & a_{22}+c b_{22} & \ldots & a_{2 n}+c b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1}+c b_{n 1} & a_{n 2}+c b_{n 2} & \ldots & a_{n n}+c b_{n n}
\end{array}\right)  \tag{35}\\
& =\left(\begin{array}{cccc}
\overline{a_{11}+c b_{11}} & \overline{a_{12}+c b_{12}} & \ldots & \overline{a_{1 n}+c b_{1 n}} \\
a_{21}+c b_{21} & \frac{a_{22}+c b_{22}}{} & \ldots & \frac{a_{2 n}+c b_{2 n}}{} \\
\vdots & \vdots & \ddots & \vdots \\
\overline{a_{n 1}+c b_{n 1}} & \overline{a_{n 2}+c b_{n 2}} & \ldots & \overline{a_{n n}+c b_{n n}}
\end{array}\right)  \tag{36}\\
& =\left(\begin{array}{cccc}
\overline{a_{11}}+\bar{c} \overline{b_{11}} & \overline{a_{22}}+\bar{c} \overline{\bar{b}_{12}} & \ldots & \overline{a_{1 n}}+\bar{c} \overline{b_{21}} \\
\overline{a_{22}}+\overline{c \overline{b_{22}}} & \ldots & \overline{a_{2} n}+\bar{c} \overline{b_{2 n}} \\
\vdots & \vdots & \ddots & \vdots \\
\overline{a_{n 1}}+\bar{c} \overline{b_{n 1}} & \overline{a_{n 2}}+\bar{c} \overline{b_{n 2}} & \ldots & \overline{a_{n n}}+\bar{c} \overline{b_{n n}}
\end{array}\right)  \tag{37}\\
& =\bar{A}+c^{*} \bar{B} \tag{38}
\end{align*}
$$

where in Eq. 37 we use the fact that the complex conjugate distributes over addition and multiplication.

### 2.3 Hermitian Conjugate

Definition given in Defn. 1.5.
Corollary 2.4 For $A, B \in \mathbf{M}(n, \mathbb{C}), c \in \mathbb{C},(A+c B)^{\dagger}=A^{\dagger}+c^{*} B^{\dagger}$
Pf.

$$
\begin{align*}
(A+c B)^{\dagger} & =\overline{(A+c b)^{T}}  \tag{39}\\
& =\overline{A^{T}+c B^{T}}  \tag{40}\\
& =\overline{A^{T}}+\bar{c} \overline{B^{T}}  \tag{41}\\
& =A^{\dagger}+c^{*} B^{\dagger} \tag{42}
\end{align*}
$$

### 2.4 Commutator

Definition in Defn. 1.6
Property 2.5 For all matrices $A, B$,

$$
\begin{equation*}
[A, B]=A B-B A=-(B A-A B)=-[B, A] \tag{43}
\end{equation*}
$$

Property 2.6 Commutator is a billinear form, ie.

$$
\begin{align*}
& {\left[\lambda\left(A_{1}+A_{2}\right), B\right]=\lambda\left[A_{1}, B\right]+\lambda\left[A_{2}, B\right]}  \tag{44}\\
& {\left[A, \lambda\left(B_{1}+B_{2}\right)\right]=\lambda\left[A, B_{1}\right]+\lambda\left[A, B_{2}\right]} \tag{45}
\end{align*}
$$

Pf.

$$
\begin{align*}
{\left[\lambda\left(A_{1}+A_{2}\right), B\right] } & =\lambda\left(A_{1}+A_{2}\right) B-B \lambda\left(A_{1}+A_{2}\right)  \tag{46}\\
& =\lambda\left(A_{1} B-B A_{1}\right)+\lambda\left(A_{2} B-B A_{2}\right)  \tag{47}\\
& =\lambda\left[A_{1}, B\right]+\lambda\left[A_{2}, B\right] \tag{48}
\end{align*}
$$

By Prop. 2.5, this also applies to $A, \lambda\left(B_{1}+B_{2}\right)$.
Property 2.7 For matrices $A, B$,

$$
\begin{equation*}
\left[A^{2}, B\right]=A[A, B]+[A, B] A \tag{49}
\end{equation*}
$$

In general,

$$
\begin{equation*}
\left[A^{n}, B\right]=\sum_{j=0}^{n-1} A^{j}[A, B] A^{n-j-1} \tag{50}
\end{equation*}
$$

Pf. TODO
Similarly,
Property 2.8 For matrices $A, B, C$ s.t. $[A, B]=[A, C]=0$

$$
\begin{equation*}
[A, B C]=0 \tag{51}
\end{equation*}
$$

Ie. if a matrix $A$ commutes with two matrices $B, C$, it also commutes with the product BC.
Pf.

$$
\begin{align*}
{[A, B C] } & =A B C-B C A  \tag{52}\\
& =A B C-B A C+B A C-B C A  \tag{53}\\
& =(A B-B A) C+B(A C-C A)  \tag{54}\\
& =[A, B] C+B[A, C]  \tag{55}\\
& =0 \tag{56}
\end{align*}
$$

### 2.5 Trace

Definition given in Defn. 1.7.
Property 2.9 Trace is distributive over addition and scalar multiplication Pf.

For $A, B \in \mathbf{M}(n, \mathbb{F})$,

$$
\begin{align*}
\operatorname{Tr}[A+c B] & =\operatorname{Tr}\left[\left(\begin{array}{cccc}
a_{11}+c b_{11} & a_{12}+c b_{12} & \ldots & a_{1 n}+c b_{1 n} \\
a_{21}+c b_{21} & a_{22}+c b_{22} & \ldots & a_{2 n}+c b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1}+c b_{n 1} & a_{n 2}+c b_{n 2} & \ldots & a_{n n}+c b_{n n}
\end{array}\right)\right]  \tag{57}\\
& =\left(a_{11}+c b_{11}\right)+\left(a_{22}+c b_{22}\right)+\ldots+\left(a_{n n}+c b_{n n}\right.  \tag{58}\\
& =\left(a_{11}+a_{22}+\ldots+a_{n n}\right)+c\left(b_{11}+b_{22}+\ldots+b_{n n}\right)  \tag{59}\\
& =\operatorname{Tr}[A]+c \operatorname{Tr}[B] \tag{60}
\end{align*}
$$

Property 2.10 Trace is invariant to transpose
Pf.

$$
\begin{equation*}
\operatorname{Tr}\left[A^{T}\right]=\sum_{i}^{n}\left[A^{T}\right]_{i i}=\sum_{i}^{n}[A]_{i i}=\operatorname{Tr}[A] \tag{61}
\end{equation*}
$$

Property 2.11 Trace is invariant to cyclic permutation. Ie. for any matrices $A, B, C \in \mathbf{M}(n, \mathbb{F})$,

$$
\begin{equation*}
\operatorname{Tr}[A B C]=\operatorname{Tr}[C A B]=\operatorname{Tr}[B C A] \tag{62}
\end{equation*}
$$

This is known as the cyclic property of the trace and is general for any number of products.
Pf.
Consider the trace of $k$ products. The general case of $k=n$ can be proven with just $k=2$.

Base case ( $k=2$ ):
Let $A, B$ be matrices in $\mathbf{M}(n, \mathbb{F})$ s.t. $A$ has rows $a_{i *}$ and columns $a_{* j}$. Similarly $B$ has rows $b_{i *}$ and columns $b_{* j}$. Ie.,

$$
\begin{align*}
& A=\left(\begin{array}{ccc}
\ldots & a_{1 *} & \ldots \\
\ldots & a_{2 *} & \ldots \\
& \vdots & \\
\ldots & a_{n *} & \ldots
\end{array}\right)=\left(\begin{array}{ccc}
\mid & \mid & \\
\mid & \mid & \\
a_{* 1} & a_{* 2} & \ldots \\
\mid & \mid & \\
\mid & \mid & \\
a_{* n} \\
\mid
\end{array}\right)  \tag{63}\\
& B=\left(\begin{array}{ccc}
\ldots & b_{1 *} & \ldots \\
\ldots & b_{2 *} & \ldots \\
& \vdots & \\
\ldots & b_{n *} & \ldots
\end{array}\right)=\left(\begin{array}{ccc}
\mid & \mid & \\
\mid & \mid & \\
b_{* 1} & b_{* 2} & \ldots \\
\mid & \mid & \\
\mid & \mid & \\
b_{* n} \\
\mid
\end{array}\right) \tag{64}
\end{align*}
$$

Then,

$$
\begin{align*}
\operatorname{Tr}[A B] & =\operatorname{Tr}\left[\left(\begin{array}{ccc}
\ldots & a_{1 *} & \ldots \\
\ldots & a_{2 *} & \ldots \\
& \vdots & \\
\ldots & a_{n *} & \ldots
\end{array}\right)\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
\mid & \mid & & \mid \\
b_{* 1} & b_{* 2} & \ldots & b_{* n} \\
\mid & \mid & & \mid
\end{array}\right)\right]  \tag{66}\\
& =\operatorname{Tr}\left[\left(\begin{array}{cccc}
a_{1 *} \cdot b_{* 1} & a_{1 *} \cdot b_{* 2} & \ldots & a_{1 *} \cdot b_{* n} \\
a_{2 *} \cdot b_{* 1} & a_{2 *} \cdot b_{* 2} & \ldots & a_{2 *} \cdot b_{* n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n *} \cdot b_{* 1} & a_{n *} \cdot b_{* 2} & \ldots & a_{n *} \cdot b_{* n}
\end{array}\right)\right]  \tag{67}\\
& =\sum_{i}^{n} a_{i *} \cdot b_{* i}=\sum_{i}^{n} \sum_{j}^{n} a_{i j} b_{j i}  \tag{68}\\
& =\sum_{j}^{n} \sum_{i}^{n} b_{j i} a_{i j}=\sum_{j}^{n} b_{j *} \cdot a_{* j}  \tag{69}\\
& =\operatorname{Tr}\left[\left(\begin{array}{ccc}
b_{1 *} \cdot a_{* 1} & b_{1 *} \cdot a_{* 2} & \ldots \\
b_{2 *} \cdot a_{* 1} & b_{2 *} \cdot a_{* 2} & \ldots \\
\vdots & b_{2 *} \cdot a_{* n} \\
\vdots & \vdots & \ddots \\
\vdots \\
b_{n *} \cdot a_{* 1} & b_{n *} \cdot a_{* 2} & \ldots \\
b_{n *} \cdot a_{* n}
\end{array}\right)\right]  \tag{70}\\
& =\operatorname{Tr}\left[\left(\begin{array}{ccc}
\ldots & b_{1 *} & \ldots \\
\ldots & b_{2 *} & \ldots \\
\vdots & \vdots \\
\ldots & b_{n *} & \ldots
\end{array}\right)\left(\begin{array}{ccc}
\mid & \mid & \mid \\
a_{* 1} & a_{* 2} & \ldots \\
\mid & \mid & a_{* n} \\
\mid & \mid & \mid
\end{array}\right)\right]  \tag{71}\\
& =\operatorname{Tr}[B A] \tag{72}
\end{align*}
$$

Illustrative case: $(k=3)$

$$
\begin{align*}
& \operatorname{Tr}[A B C]=\operatorname{Tr}[(A B) C]=\operatorname{Tr}[C(A B)]  \tag{73}\\
= & \operatorname{Tr}[C A B]=\operatorname{Tr}[(C A) B]=\operatorname{Tr}[B(C A)] \\
= & \operatorname{Tr}[B C A]
\end{align*}
$$

General case: $(k=n)$

$$
\begin{align*}
\operatorname{Tr}\left[A_{1} A_{2} \ldots A_{n-1} A_{n}\right] & =\operatorname{Tr}\left[A_{1}\left(A_{2} \ldots A_{n-1} A_{n}\right)\right]=\operatorname{Tr}\left[\left(A_{2} \ldots A_{n-1} A_{n}\right) A_{1}\right]  \tag{74}\\
& =\operatorname{Tr}\left[A_{2} \ldots A_{n-1} A_{n} A_{1}\right] \\
& =\ldots \\
& =\operatorname{Tr}\left[A_{i} A_{i+1} \ldots A_{1} A_{2} \ldots A_{n-1} A_{n} \ldots A_{i-2} A_{i-1}\right] \\
& =\operatorname{Tr}\left[\left(A_{i} A_{i+1} \ldots A_{1} A_{2} \ldots A_{n-1} A_{n} \ldots A_{i-2}\right) A_{i-1}\right] \\
& =\operatorname{Tr}\left[A_{i-1}\left(A_{i} A_{i+1} \ldots A_{1} A_{2} \ldots A_{n-1} A_{n} \ldots A_{i-2}\right)\right] \\
& =\operatorname{Tr}\left[A_{i-1} A_{i} A_{i+1} \ldots A_{1} A_{2} \ldots A_{n-1} A_{n} \ldots A_{i-2}\right] \\
& =\ldots
\end{align*}
$$

Corollary 2.12 Trace is invariant to change of basis.
Pf.
$\operatorname{Tr}\left[U^{\dagger} A U\right]=\operatorname{Tr}\left[U U^{\dagger} A\right]=\operatorname{Tr}[A]$ for unitary $U$ by Prop 2.11.

## 3 Symmetric matrix properties

Definition 3.1 Let $\mathbf{S}(n) \subset \mathbf{M}(n, \mathbb{R})$ denote the set of symmetric real $n \times n$ matrices (as defined in Defn. 1.8).

Property 3.2 $\mathbf{S}(n)$ is closed under addition and scalar multiplication.
Pf.
For $A, B \in \mathbf{S}(n)$,

$$
\begin{equation*}
(A+c B)^{T}=A^{T}+c B^{T}=A+c B \tag{75}
\end{equation*}
$$

Property 3.3 For symmetric $A, B$, their product $A B \in \mathbf{S}(n) \Longleftrightarrow A B=B A$ Pf.
$A B \in \mathbf{S}(n) \Longrightarrow A B=B A$

$$
\begin{equation*}
A B=(A B)^{T}=B^{T} A^{T}=B A \tag{76}
\end{equation*}
$$

$A B \in \mathbf{S}(n) \Longleftarrow A B=B A$

$$
\begin{equation*}
(A B)^{T}=B^{T} A^{T}=B A=A B \tag{77}
\end{equation*}
$$

Corollary 3.4 For $m \in \mathbb{Z}$, if $A \in \mathbf{S}(n)$, then $A^{m} \in \mathbf{S}(n)$
Pf.
Follows directly from Prop. 3.3 and the fact that a matrix commutes with itself.

## 4 Anti-symmetric/skew-symmetric matrix properties

Definition 4.1 Let $\mathbf{S S}(n)$ denote the set of skew-symmetric real $n \times n$ matrices (as defined in Defn. 1.8.
For the following properties, assume $A, B \in \mathbf{S S}(n)$
Property 4.2 SS(n) closed under addition and scalar multiplication.
Pf.

$$
\begin{equation*}
(A+c B)^{T}=A^{T}+c B^{T}=-A-c B=-(A+c B) \tag{78}
\end{equation*}
$$

## 5 Orthogonal matrix properties

TODO

## 6 Hermitian matrices

Definition 6.1 Let $\mathbf{H}(n) \subset \mathbf{M}(n, \mathbb{C})$ denote the set of Hermitian $n \times n$ matrices (as defined in 1.9).
Property 6.2 $\mathbf{H}(n)$ closed under addition
Pf. For $A, B \in \mathbf{H}(n)$,

$$
\begin{equation*}
(A+B)^{\dagger}=A^{\dagger}+B^{\dagger}=(A+B) \tag{79}
\end{equation*}
$$

by 2.4
Key result for quantum mechanics:
Property 6.3 If $A$ is Hermitian, then $A$ has real eigenvalues
Pf.
Let $\lambda_{i}$ be the $i^{\text {th }}$ eigenvalue of $A$ with eigenvector $v_{i}$. For convenience, assume the eigenvectors are normalized to $1\left(v_{i} \cdot v_{i}=v_{i}^{\dagger} v_{i}=1\right)$. Then,

$$
\begin{align*}
A v_{i} & =\lambda_{i} v_{i}  \tag{80}\\
v_{i}^{\dagger} A v_{i} & =\lambda_{i} v_{i}^{\dagger} v_{i}  \tag{81}\\
v_{i}^{\dagger} A v_{i} & =\lambda_{i} \tag{82}
\end{align*}
$$

Taking the hermitian conjugate of Eq. 80,

$$
\begin{align*}
v_{i}^{\dagger} A^{\dagger} & =\lambda_{i}^{*} v_{i}^{\dagger}  \tag{83}\\
v_{i}^{\dagger} A^{\dagger} v_{i} & =\lambda_{i}^{*} v_{i}^{\dagger} v_{i}  \tag{84}\\
v_{i}^{\dagger} A v_{i} & =\lambda_{i}^{*} \tag{85}
\end{align*}
$$

Subtracting Eqs. 82 and 85,

$$
\begin{align*}
0 & =\lambda_{i}-\lambda_{i}^{*}  \tag{86}\\
& =\operatorname{Re}\left[\lambda_{i}\right]+\operatorname{Im}\left[\lambda_{i}\right] i-\left(\operatorname{Re}\left[\lambda_{i}\right]-\operatorname{Im}\left[\lambda_{i}\right] i\right)  \tag{87}\\
& =2 \operatorname{Im}\left[\lambda_{i}\right] \tag{88}
\end{align*}
$$

Then each of $\lambda_{i}$ are purely real, since $\operatorname{Im} \lambda_{i}=0$.
Property 6.4 If $A, B$ are two Hermitian matrices, then the commutator $[A, B]$ of $A$ and $B$ is skew-Hermitian

Pf.

$$
\begin{align*}
{[A, B] } & =A B-B A  \tag{89}\\
& =(B A)^{\dagger}-(A B)^{\dagger}  \tag{90}\\
& =(B A-A B)^{\dagger}  \tag{91}\\
& =[B, A]^{\dagger}=-[A, B]^{\dagger} \tag{92}
\end{align*}
$$

where we've used the trivial property of the commutator that for any matrices $A, B$, the following is true: $[A, B]=A B-B A=-(B A-A B)=-[B, A]$.

