Spin contamination

samrmay

Aug 2022

1 Operators

We define the spin angular momentum of a particle as a vector operator \vec{s} :
$\vec{s}=\left(\begin{array}{c}\hat{s}_{x} \\ \hat{s}_{y} \\ \hat{s}_{z}\end{array}\right)$
and \hat{s}^{2} as the scalar operator:
$s^{2}=\vec{s} \cdot \vec{s}=\hat{s}_{x}^{2}+\hat{s}_{y}^{2}+\hat{s}_{z}^{2}$
The components of the spin angular momentum vector satisfy the commutation relations:
$\left[\hat{s}_{x}, \hat{s}_{y}\right]=i \hat{s}_{z}$
$\left[\hat{s}_{y}, \hat{s}_{z}\right]=i \hat{s}_{x}$
$\left[\hat{s}_{z}, \hat{s}_{x}\right]=i \hat{s}_{y}$
Because these operators do not commute (cannot be measured simultaneously), the complete spin state of a particle can be described by the simultaneous eigenfunctions of s^{2} and a component of \vec{s}, usually \hat{s}_{z}. Therefore, define a spin vector to be of the following form:
$\left|s, m_{s}\right\rangle$
where s, m_{s} are quantum numbers describing total spin and the z component of the spin, defined by their respective operators' action on the wave function:
$s^{2}\left|s, m_{s}\right\rangle=s(s+1)\left|s, m_{s}\right\rangle$
$\hat{s}_{z}\left|s, m_{s}\right\rangle=m_{s}\left|s, m_{s}\right\rangle$
$|\alpha\rangle,|\beta\rangle$ are spin basis vectors defined as:
$|\alpha\rangle \equiv\left|\frac{1}{2}, \frac{1}{2}\right\rangle$
$|\beta\rangle \equiv\left|\frac{1}{2},-\frac{1}{2}\right\rangle$

We can then show how each operator acts on $|\alpha\rangle,|\beta\rangle$
$\hat{s}_{z}|\alpha\rangle=\frac{1}{2}|\alpha\rangle$
$\hat{s}_{z}|\beta\rangle=-\frac{1}{2}|\beta\rangle$
$\hat{s}_{x}|\alpha\rangle=\frac{1}{2}|\beta\rangle$
$\hat{s}_{x}|\beta\rangle=\frac{1}{2}|\alpha\rangle$
$\hat{s}_{y}|\alpha\rangle=\frac{i}{2}|\beta\rangle$
$\hat{s}_{y}|\beta\rangle=-\frac{i}{2}|\alpha\rangle$
Note that while $|\alpha\rangle,|\beta\rangle$ are eigenfunctions of s^{2}, \hat{s}_{z}, they are not eigenfunctions of \hat{s}_{x}, \hat{s}_{y}
Can also define step up and down operators:
$\hat{S}_{+} \equiv \hat{s}_{x}+i \hat{s}_{y}$
$\hat{S}_{-} \equiv \hat{s}_{x}-i \hat{s}_{y}$
which respectively increase or decrease the value of m_{s} by 1 . We can show the action of \hat{S}_{+}, \hat{S}_{-}on the basis vectors $|\alpha\rangle,|\beta\rangle$

$$
\begin{align*}
\hat{S}_{+}|\alpha\rangle & =\left(\hat{s}_{x}+i \hat{s}_{y}\right)|\alpha\rangle \tag{1}\\
& =\hat{s}_{x}|\alpha\rangle+i \hat{s}_{y}|\alpha\rangle \tag{2}\\
& =\frac{1}{2}|\beta\rangle+\frac{i^{2}}{2}|\beta\rangle \tag{3}\\
& =\frac{1}{2}|\beta\rangle-\frac{1}{2}|\beta\rangle \tag{4}\\
& =0 \tag{5}
\end{align*}
$$

$$
\begin{equation*}
\hat{S}_{+}|\beta\rangle=\left(\hat{s}_{x}+i \hat{s}_{y}\right)|\beta\rangle \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
=\hat{s}_{x}|\beta\rangle-i \hat{s}_{y}|\beta\rangle \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{1}{2}|\alpha\rangle+\frac{1}{2}|\alpha\rangle \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
=|\alpha\rangle \tag{9}
\end{equation*}
$$

$$
\begin{align*}
\hat{S}_{-}|\alpha\rangle & =\left(\hat{s}_{x}-i \hat{s}_{y}\right)|\alpha\rangle \tag{10}\\
& =\hat{s}_{x}|\alpha\rangle+i \hat{s}_{y}|\alpha\rangle \tag{11}\\
& =\frac{1}{2}|\beta\rangle+\frac{1}{2}|\beta\rangle \tag{12}\\
& =|\beta\rangle \tag{13}
\end{align*}
$$

$$
\begin{align*}
\hat{S}_{-}|\beta\rangle & =\hat{s}_{x}|\beta\rangle-i \hat{s}_{y}|\beta\rangle \tag{14}\\
& =\frac{1}{2}|\alpha\rangle-\frac{1}{2}|\alpha\rangle \tag{15}\\
& =0 \tag{16}
\end{align*}
$$

We can use the step up/down operators to rewrite s^{2} :

$$
\begin{align*}
s^{2} & =\hat{s}_{x}^{2}+\hat{s}_{y}^{2}+\hat{s}_{z}^{2} \tag{17}\\
& =\left(\hat{s}_{x}+i \hat{s}_{y}\right)\left(\hat{s}_{x}-i \hat{s}_{y}\right)+i \hat{s}_{x} \hat{s}_{y}-i \hat{s}_{y} \hat{s}_{x}+\hat{s}_{z}^{2} \tag{18}\\
& =\hat{S}_{+} \hat{S}_{-}+i\left(\hat{s}_{x} \hat{s}_{y}-\hat{s}_{y} \hat{s}_{x}\right)+\hat{s}_{z}^{2} \tag{19}\\
& =\hat{S}_{+} \hat{S}_{-}+i\left[\hat{s}_{x}, \hat{s}_{y}\right]+\hat{s}_{z}^{2} \tag{20}\\
& =\hat{S}_{+} \hat{S}_{-}+i^{2} \hat{s}_{z}+\hat{s}_{z}^{2} \tag{21}\\
& =\hat{S}_{+} \hat{S}_{-}-\hat{s}_{z}+\hat{s}_{z}^{2} \tag{22}
\end{align*}
$$

and also

$$
\begin{equation*}
s^{2}=\hat{S}_{-} \hat{S}_{+}+\hat{s}_{z}+\hat{s}_{z}^{2} \tag{23}
\end{equation*}
$$

Finally, we can define analogous multi-electron versions of all of the above operators.

$$
\begin{aligned}
& \overrightarrow{\mathcal{L}}=\sum_{i}^{N} \vec{s}(i) \\
& \mathcal{L}_{\mu} \equiv \sum_{i}^{N} \hat{S}_{\mu}(i) \\
& \text { for } \mu \in\{x, y, z\} \\
& \mathcal{L}_{ \pm}=\sum_{i}^{N} \hat{S}_{ \pm}(i)
\end{aligned}
$$

$$
\begin{align*}
\mathcal{L}^{2} & =\overrightarrow{\mathcal{L}} \cdot \overrightarrow{\mathcal{L}} \tag{24}\\
& =\sum_{i}^{N} \sum_{j}^{N} \vec{s}(i) \cdot \vec{s}(j) \tag{25}\\
& =\mathcal{L}_{+} \mathcal{L}_{-}-\mathcal{L}_{z}+\mathcal{L}_{z}^{2} \tag{26}\\
& =\mathcal{L}_{-} \mathcal{L}_{+}+\mathcal{L}_{z}+\mathcal{L}_{z}^{2} \tag{27}
\end{align*}
$$

Where each sum runs over all electrons in the system.

2 Basis sets

In general, a basis set of 2 K spin functions can be built in two distinct ways. In the restricted formalism, there is a set of K spatial functions, which are each multiplied by an α or a β to create 2 K spin functions:

$$
\begin{align*}
\left\{\chi_{1}, \chi_{2}, \ldots, \chi_{2 K-1}, \chi_{2 K}\right\} & =\left\{\psi_{1}, \bar{\psi}_{1}, \ldots, \psi_{K}, \bar{\psi}_{K}\right\} \tag{28}\\
& =\left\{\psi_{1} \alpha, \psi_{1} \beta, \ldots, \psi_{K} \alpha, \psi_{K} \beta\right\} \tag{29}
\end{align*}
$$

Note that this basis set is orthonormal if the set of spatial functions $\left\{\psi_{1}, \ldots, \psi_{K}\right\}$ is orthonormal due to α, β being orthogonal.

In the unrestricted formalism, the $2 i$ and $2 i-1$ spin basis functions are not constrained to have the same spatial component. Ie.

$$
\begin{align*}
\left\{\chi_{1}, \chi_{2}, \ldots, \chi_{2 K-1}, \chi_{2 K}\right\} & =\left\{\psi_{1}^{\alpha}, \bar{\psi}_{1}^{\beta}, \ldots, \psi_{K}^{\alpha}, \bar{\psi}_{K}^{\beta}\right\} \tag{30}\\
& =\left\{\psi_{1}^{\alpha} \alpha, \psi_{1}^{\beta} \beta, \ldots, \psi_{K}^{\alpha} \alpha, \psi_{K}^{\beta} \beta\right\} \tag{31}
\end{align*}
$$

Where
$B^{\alpha}=\left\{\psi_{1}^{\alpha}, \ldots, \psi_{K}^{\alpha}\right\}$
$B^{\beta}=\left\{\psi_{1}^{\beta}, \ldots, \psi_{K}^{\beta}\right\}$
both form orthonormal basis sets. ψ_{i}^{α} and ψ_{j}^{β} need not be orthogonal for the overall basis set to be orthonormal (again due to $\langle\alpha \mid \beta\rangle=0$). We define the components of the spin overlap matrix $S^{\alpha \beta}$ as
$S_{i j}^{\alpha \beta}=\left\langle\psi_{i}^{\alpha} \mid \psi_{j}^{\beta}\right\rangle$
From this, we can see that the restricted approximation is a special case where $S^{\alpha \beta}$ is the identity matrix. Ie.
$\left\langle\psi_{i}^{\alpha} \mid \psi_{j}^{\beta}\right\rangle=\delta_{i j}$
and thus
$\psi_{i}^{\alpha}=\psi_{i}^{\beta}=\psi_{i}$
Finally, we note the constraints on the matrix $S^{\alpha \beta}$. We first assume that $\left\{\psi_{i}^{\alpha}\right\}$ and $\left\{\psi_{i}^{\beta}\right\}$ span the same space. Ie:
$S p\left(\left\{\psi_{i}^{\alpha}\right\}\right)=\operatorname{Sp}\left(\left\{\psi_{i}^{\alpha}\right\} \cup\left\{\psi_{i}^{\beta}\right\}\right)=\operatorname{Sp}\left(\left\{\psi_{i}^{\beta}\right\}\right)$
where $S p$ is the span. In that case, in combination with the fact that both $\left\{\psi_{i}^{\alpha}\right\}$ and $\left\{\psi_{i}^{\beta}\right\}$ are orthonormal, we can expand any function ψ_{i}^{α} as a unique linear combination of ψ_{j}^{β}. It is trivial to show that the coefficients of this expansion are the elements of the $i^{\text {th }}$ row of $S^{\alpha \beta}$:

$$
\begin{align*}
\left|\psi_{i}^{\alpha}\right\rangle & =\sum_{j}^{K}\left|\psi_{j}^{\beta}\right\rangle\left\langle\psi_{j}^{\beta} \mid \psi_{i}^{\alpha}\right\rangle \tag{32}\\
& =\sum_{j}^{K} S_{i j}^{\alpha \beta^{*}}\left|\psi_{j}^{\beta}\right\rangle \tag{33}\\
& =\sum_{j}^{K} S_{i j}^{\alpha \beta}\left|\psi_{j}^{\beta}\right\rangle \tag{34}
\end{align*}
$$

Using this equality,

$$
\begin{align*}
1=\left\langle\psi_{i}^{\alpha} \mid \psi_{i}^{\alpha}\right\rangle & =\sum_{j}^{K} S_{i j}^{\alpha \beta}\left\langle\psi_{j}^{\beta}\right| \sum_{l}^{K} S_{i l}^{\alpha \beta}\left|\psi_{l}^{\beta}\right\rangle \tag{35}\\
& =\sum_{j}^{K} \sum_{l}^{K} S_{i j}^{\alpha \beta} S_{i l}^{\alpha \beta}\left\langle\psi_{j}^{\beta} \mid \psi_{l}^{\beta}\right\rangle \tag{36}\\
& =\sum_{j}^{K} \sum_{l}^{K} S_{i j}^{\alpha \beta} S_{i l}^{\alpha \beta} \delta_{j l} \tag{37}\\
& =\sum_{j}^{K} S_{i j}^{\alpha \beta} S_{i j}^{\alpha \beta} \tag{38}\\
& =\sum_{j}^{K} S_{i j}^{\alpha \beta^{2}} \tag{39}
\end{align*}
$$

Ie. the sum of the squared elements of any row in $S^{\alpha \beta}$ is exactly equal to 1. Without loss of generality, this can also be proven for each column (by taking the transpose of $S^{\alpha \beta}$), and noting that spatial wave functions are real).

3 Derivations

$3.1 \mathcal{L}_{z}$

First, we prove that for any single determinant $|\Psi\rangle$,

$$
\begin{equation*}
\mathcal{L}_{z}|\Psi\rangle=\frac{N^{\alpha}-N^{\beta}}{2}|\Psi\rangle \tag{40}
\end{equation*}
$$

Ie. any single determinant is an eigenfunction of \mathcal{L}_{z} with eigenvalue of $\frac{N^{\alpha}-N^{\beta}}{2}$, where N^{α} is the number of occupied α orbitals and β is the number of occupied β orbitals.Using second quantization,

$$
\begin{align*}
\mathcal{L}_{z}|\Psi\rangle & =\sum_{p}^{2 K} \sum_{q}^{2 K}\left\langle\chi_{p}\right| \hat{s}_{z}\left|\chi_{q}\right\rangle a_{p}^{\dagger} a_{q}|\Psi\rangle \tag{41}\\
& =\sum_{p}^{2 K} \sum_{q}^{2 K}\left\langle\psi_{p}^{\eta_{p}} \eta_{p}\right| \hat{s}_{z}\left|\psi_{q}^{\eta_{q}} \eta_{q}\right\rangle a_{p}^{\dagger} a_{q}|\Psi\rangle \tag{42}\\
& =\sum_{p}^{2 K} \sum_{q}^{2 K}\left\langle\psi_{p}^{\eta_{p}} \mid \psi_{q}^{\eta_{q}}\right\rangle\left\langle\eta_{p}\right| \hat{s}_{z}\left|\eta_{q}\right\rangle a_{p}^{\dagger} a_{q}|\Psi\rangle \tag{43}\\
& =\frac{1}{2}\left[\sum_{p}^{2 K} \sum_{q}^{K_{\alpha}}\left\langle\psi_{p}^{\eta_{p}} \mid \psi_{q}^{\alpha}\right\rangle\left\langle\eta_{p} \mid \alpha\right\rangle a_{p}^{\dagger} a_{q}-\sum_{p}^{2 K} \sum_{q}^{K_{\beta}}\left\langle\psi_{p}^{\eta_{p}} \mid \psi_{q}^{\beta}\right\rangle\left\langle\eta_{p} \mid \beta\right\rangle a_{p}^{\dagger} a_{q}\right]|\Psi\rangle \tag{44}\\
& =\frac{1}{2}\left[\sum_{p}^{2 K} \sum_{q}^{K_{\alpha}}\left\langle\psi_{p}^{\eta_{p}} \mid \psi_{q}^{\alpha}\right\rangle \delta_{\eta_{p} \alpha} a_{p}^{\dagger} a_{q}-\sum_{p}^{2 K} \sum_{q}^{K_{\beta}}\left\langle\psi_{p}^{\eta_{p}} \mid \psi_{q}^{\beta}\right\rangle \delta_{\eta_{p} \beta} a_{p}^{\dagger} a_{q}\right]|\Psi\rangle \tag{45}\\
& =\frac{1}{2}\left[\sum_{p}^{K_{\alpha}} \sum_{q}^{K_{\alpha}}\left\langle\psi_{p}^{\alpha} \mid \psi_{q}^{\alpha}\right\rangle a_{p}^{\dagger} a_{q}-\sum_{p}^{K_{\beta}} \sum_{q}^{K_{\beta}}\left\langle\psi_{p}^{\beta} \mid \psi_{q}^{\beta}\right\rangle a_{p}^{\dagger} a_{q}\right]|\Psi\rangle \tag{46}\\
& =\frac{1}{2}\left[\sum_{p}^{K_{\alpha}} \sum_{q}^{K_{\alpha}} \delta_{p q} a_{p}^{\dagger} a_{q}-\sum_{p}^{K_{\beta}} \sum_{q}^{K_{\beta}} \delta_{p q} a_{p}^{\dagger} a_{q}\right]|\Psi\rangle \tag{47}\\
& =\frac{1}{2}\left[\sum_{p}^{K_{\alpha}} a_{p}^{\dagger} a_{p}-\sum_{p}^{K_{\beta}} a_{p}^{\dagger} a_{p}\right]|\Psi\rangle \tag{48}
\end{align*}
$$

Here, we note that the terms with a a_{p} operator annihilating a virtual orbital will vanish:

$$
\begin{align*}
& =\frac{1}{2}\left[\sum_{i}^{N_{\alpha}} a_{i}^{\dagger} a_{i}-\sum_{i}^{N_{\beta}} a_{i}^{\dagger} a_{i}\right]|\Psi\rangle \tag{50}\\
& =\frac{1}{2}\left[\sum_{i}^{N_{\alpha}}\left(\delta_{i i}-a_{i} a_{i}^{\dagger}\right)-\sum_{i}^{N_{\beta}}\left(\delta_{i i}-a_{i} a_{i}^{\dagger}\right)\right]|\Psi\rangle \tag{51}\\
& =\frac{1}{2}\left[\sum_{i}^{N_{\alpha}} \delta_{i i}-\sum_{i}^{N_{\beta}} \delta_{i i}\right]|\Psi\rangle \tag{52}\\
& =\frac{1}{2}\left[N_{\alpha}-N_{\beta}\right]|\Psi\rangle \tag{53}\\
& =\frac{N_{\alpha}-N_{\beta}}{2}|\Psi\rangle \tag{54}
\end{align*}
$$

3.2 Spin contamination

Want to find the expectation value of \mathcal{L}^{2} for a determinant in general. Ie.

$$
\begin{align*}
\left\langle\mathcal{L}^{2}\right\rangle_{U H F} & =\langle\Psi| \mathcal{L}^{2}|\Psi\rangle \tag{55}\\
& =\langle\Psi| \mathcal{L}_{-} \mathcal{L}_{+}+\mathcal{L}_{z}+\mathcal{L}_{z}^{2}|\Psi\rangle \tag{56}\\
& =\langle\Psi| \mathcal{L}_{-} \mathcal{L}_{+}|\Psi\rangle+\langle\Psi| \mathcal{L}_{z}|\Psi\rangle+\langle\Psi| \mathcal{L}_{z}^{2}|\Psi\rangle \tag{57}
\end{align*}
$$

Using the result from section 3.1,

$$
\begin{equation*}
\langle\Psi| \mathcal{L}_{z}|\Psi\rangle=\frac{N_{\alpha}-N_{\beta}}{2} \tag{58}
\end{equation*}
$$

for a normalized determinant $|\Psi\rangle$. Similarly,

$$
\begin{align*}
\langle\Psi| \mathcal{L}^{2}|\Psi\rangle & =\frac{N_{\alpha}-N_{\beta}}{2}\langle\Psi| \mathcal{L}|\Psi\rangle \tag{59}\\
& =\left(\frac{N_{\alpha}-N_{\beta}}{2}\right)^{2} \tag{60}
\end{align*}
$$

For the first term, we again use second quantization:

$$
\begin{align*}
\langle\Psi| \mathcal{L}_{-} \mathcal{L}_{+}|\Psi\rangle & =\sum_{p q r s}^{2 K}\left\langle\psi_{p}^{\eta_{p}} \eta_{p}\right| \hat{S}_{-}\left|\psi_{q}^{\eta_{q}} \eta_{q}\right\rangle\left\langle\psi_{r}^{\eta_{r}} \eta_{r}\right| \hat{S}_{+}\left|\psi_{s}^{\eta_{s}} \eta_{s}\right\rangle\langle\Psi| a_{p}^{\dagger} a_{q} a_{r}^{\dagger} a_{s}|\Psi\rangle \tag{61}\\
& =\sum_{p q r s}^{2 K}\left\langle\psi_{p}^{\eta_{p}} \mid \psi_{q}^{\eta_{q}}\right\rangle\left\langle\eta_{p}\right| \hat{S}_{-}\left|\eta_{q}\right\rangle\left\langle\psi_{r}^{\eta_{r}} \mid \psi_{s}^{\eta_{s}}\right\rangle\left\langle\eta_{r}\right| \hat{S}_{+}\left|\eta_{s}\right\rangle\langle\Psi| a_{p}^{\dagger} a_{q} a_{r}^{\dagger} a_{s}|\Psi\rangle \tag{62}
\end{align*}
$$

Terms with $\eta_{q}=\beta$ and $\eta_{s}=\alpha$ vanish due to the step down/up operators

$$
\begin{align*}
& =\sum_{p r}^{2 K} \sum_{q}^{K_{\alpha}} \sum_{s}^{K_{\beta}}\left\langle\psi_{p}^{\eta_{p}} \mid \psi_{q}^{\alpha}\right\rangle\left\langle\eta_{p}\right| \hat{S}_{-}|\alpha\rangle\left\langle\psi_{r}^{\eta_{r}} \mid \psi_{s}^{\beta}\right\rangle\left\langle\eta_{r}\right| \hat{S}_{+}|\beta\rangle\langle\Psi| a_{p}^{\dagger} a_{q} a_{r}^{\dagger} a_{s}|\Psi\rangle \tag{63}\\
& =\sum_{p r}^{2 K} \sum_{q}^{K_{\alpha}} \sum_{s}^{K_{\beta}}\left\langle\psi_{p}^{\eta_{p}} \mid \psi_{q}^{\alpha}\right\rangle\left\langle\eta_{p} \mid \beta\right\rangle\left\langle\psi_{r}^{\eta_{r}} \mid \psi_{s}^{\beta}\right\rangle\left\langle\eta_{r} \mid \alpha\right\rangle\langle\Psi| a_{p}^{\dagger} a_{q} a_{r}^{\dagger} a_{s}|\Psi\rangle \tag{64}
\end{align*}
$$

$\eta_{p}=\alpha, \eta_{q}=\beta$ vanish.

$$
\begin{align*}
& =\sum_{p s}^{K_{\beta}} \sum_{q r}^{K_{\alpha}}\left\langle\psi_{p}^{\beta} \mid \psi_{q}^{\alpha}\right\rangle\left\langle\psi_{r}^{\alpha} \mid \psi_{s}^{\beta}\right\rangle\langle\Psi| a_{p}^{\dagger} a_{q} a_{r}^{\dagger} a_{s}|\Psi\rangle \tag{65}\\
& =\sum_{p s}^{K_{\beta}} \sum_{q r}^{K_{\alpha}} S_{q p}^{\alpha \beta^{*}} S_{r s}^{\alpha \beta}\langle\Psi| a_{p}^{\dagger} a_{q} a_{r}^{\dagger} a_{s}|\Psi\rangle \tag{66}
\end{align*}
$$

Terms with p, s indices over virtual orbitals vanish

$$
\begin{align*}
& =\sum_{i j}^{N_{\beta}} \sum_{q r}^{K_{\alpha}} S_{q i}^{\alpha \beta^{*}} S_{r j}^{\alpha \beta}\langle\Psi| a_{i}^{\dagger} a_{q} a_{r}^{\dagger} a_{j}|\Psi\rangle \tag{67}\\
& =\sum_{i j}^{N_{\beta}} \sum_{q r}^{K_{\alpha}} S_{q i}^{\alpha \beta^{*}} S_{r j}^{\alpha \beta}\langle\Psi|\left(\delta_{i q}-a_{q} a_{i}^{\dagger}\right)\left(\delta_{r j}-a_{j} a_{r}^{\dagger}\right)|\Psi\rangle \tag{68}\\
& =\sum_{i j}^{N_{\beta}} \sum_{q r}^{K_{\alpha}} S_{q i}^{\alpha \beta^{*}} S_{r j}^{\alpha \beta}\langle\Psi| a_{q} a_{i}^{\dagger} a_{j} a_{r}^{\dagger}|\Psi\rangle \tag{69}
\end{align*}
$$

Terms with q, r indices over occupied orbitals vanish

$$
\begin{equation*}
=\sum_{i j}^{N_{\beta}} \sum_{a b}^{K_{\alpha}-N_{\alpha}} S_{a i}^{\alpha \beta^{*}} S_{b j}^{\alpha \beta}\langle\Psi| a_{a} a_{i}^{\dagger} a_{j} a_{b}^{\dagger}|\Psi\rangle \tag{70}
\end{equation*}
$$

Here, one can get an intuition about what $\mathcal{L}_{ \pm}$does. For \mathcal{L}_{+}on the right, there is an excitation from each occupied β orbital j to each virtual α orbital a, multiplied by the overlap between the spatial components of j and a. Using Wick's theorem:

$$
\begin{align*}
& =\sum_{i j}^{N_{\beta}} \sum_{a b}^{K_{\alpha}-N_{\alpha}} S_{a i}^{\alpha \beta^{*}} S_{b j}^{\alpha \beta}\langle\Psi| a_{j} a_{a}^{\dagger} a_{b} a_{i}^{\dagger}-\delta_{b a} a_{j} a_{i}^{\dagger}-\delta_{i j} a_{a}^{\dagger} a_{b}+\delta_{b a} \delta_{i j}|\Psi\rangle \tag{71}\\
& =\sum_{i j}^{N_{\beta}} \sum_{a b}^{K_{\alpha}-N_{\alpha}} S_{a i}^{\alpha \beta^{*}} S_{b j}^{\alpha \beta} \delta_{a b} \delta i j\langle\Psi||\Psi\rangle \tag{72}\\
& =\sum_{i}^{N_{\beta}} \sum_{a}^{K_{\alpha}-N_{\alpha}} S_{a i}^{\alpha \beta^{*}} S_{a i}^{\alpha \beta} \tag{73}\\
& =\sum_{i}^{N_{\beta}} \sum_{a}^{K_{\alpha}-N_{\alpha}}\left|S_{a i}^{\alpha \beta}\right|^{2} \tag{74}
\end{align*}
$$

Using the constraint derived in section 2,

$$
\begin{equation*}
1=\sum_{i}^{K-N_{\alpha}}\left|S_{i j}^{\alpha \beta}\right|^{2}+\sum_{i}^{N_{\alpha}}\left|S_{i j}^{\alpha \beta}\right|^{2} \tag{75}
\end{equation*}
$$

Then

$$
\begin{equation*}
\sum_{i}^{K_{\alpha}-N_{\alpha}}\left|S_{i j}^{\alpha \beta}\right|^{2}=1-\sum_{i}^{N_{\alpha}}\left|S_{i j}^{\alpha \beta}\right|^{2} \tag{77}
\end{equation*}
$$

and

$$
\begin{align*}
\sum_{j}^{N_{\beta}} \sum_{a}^{K_{\alpha}-N_{\alpha}}\left|S_{a i}^{\alpha \beta}\right|^{2} & =\sum_{j}^{N_{\beta}}\left(1-\sum_{i}^{N_{\alpha}}\left|S_{i j}^{\alpha \beta}\right|^{2}\right) \tag{78}\\
& =N_{\beta}-\sum_{i}^{N_{\alpha}} \sum_{j}^{N_{\beta}}\left|S_{i j}^{\alpha \beta}\right|^{2} \tag{79}
\end{align*}
$$

Finally, putting it all together,

$$
\begin{align*}
\langle\Psi| \mathcal{L}^{2}|\Psi\rangle & =\left(\frac{N_{\alpha}-N_{\beta}}{2}\right)^{2}+\frac{N_{\alpha}-N_{\beta}}{2}+N_{\beta}-\sum_{i}^{N_{\alpha}} \sum_{j}^{N_{\beta}}\left|S_{i j}^{\alpha \beta}\right|^{2} \tag{80}\\
& =\left(\frac{N_{\alpha}-N_{\beta}}{2}+1\right) \frac{N_{\alpha}-N_{\beta}}{2}+N_{\beta}-\sum_{i}^{N_{\alpha}} \sum_{j}^{N_{\beta}}\left|S_{i j}^{\alpha \beta}\right|^{2} \tag{81}
\end{align*}
$$

For the case of RHF, we can see that Eq. 81 reduces to

$$
\begin{align*}
& \left(\frac{N_{\alpha}-N_{\beta}}{2}+1\right) \frac{N_{\alpha}-N_{\beta}}{2}+N_{\beta}-\sum_{i}^{N_{\alpha}} \sum_{j}^{N_{\beta}} \delta_{i j}^{2} \tag{82}\\
& =\left(\frac{N_{\alpha}-N_{\beta}}{2}+1\right) \frac{N_{\alpha}-N_{\beta}}{2}+N_{\beta}-\sum_{i}^{N_{\alpha}} \sum_{j}^{N_{\beta}} 1 \tag{83}\\
& =\left(\frac{N_{\alpha}-N_{\beta}}{2}+1\right) \frac{N_{\alpha}-N_{\beta}}{2}+N_{\beta}-\sum_{j}^{N_{\beta}} 1 \tag{84}\\
& =\left(\frac{N_{\alpha}-N_{\beta}}{2}+1\right) \frac{N_{\alpha}-N_{\beta}}{2}+N_{\beta}-N_{\beta} \tag{85}\\
& =\left(\frac{N_{\alpha}-N_{\beta}}{2}+1\right) \frac{N_{\alpha}-N_{\beta}}{2} \equiv\left\langle\mathcal{L}^{2}\right\rangle_{R H F} \tag{86}
\end{align*}
$$

At which point we arrive at the equation given in Szabo and Ostlund [1]:

$$
\begin{equation*}
\langle\Psi| \mathcal{L}^{2}|\Psi\rangle=\left\langle\mathcal{L}^{2}\right\rangle_{R H F}+N_{\beta}-\sum_{i}^{N_{\alpha}} \sum_{j}^{N_{\beta}}\left|S_{i j}^{\alpha \beta}\right|^{2} \tag{87}
\end{equation*}
$$

References

[1] Attila Szabo and Neil S. Ostlund. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Dover Publications, 1996.

