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1 Operators

We define the spin angular momentum of a particle as a vector operator §:
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and 32 as the scalar operator:
2 _ 2. 222 22 a2
§°=85-5=5,+5,+5;

The components of the spin angular momentum vector satisfy the commutation
relations:

[82,8y] = 15,

[8y,8.] = i8,

(52, 82) = 18y

Because these operators do not commute (cannot be measured simultaneously),
the complete spin state of a particle can be described by the simultaneous eigen-
functions of s and a component of 5, usually 5,. Therefore, define a spin vector
to be of the following form:

s, ms)

where s, ms are quantum numbers describing total spin and the z component
of the spin, defined by their respective operators’ action on the wave func-
tion:

52 |s,ms) = s(s+ 1) |s, ms)
§z |Sams> =Mmg |37m5>

|a) , |8) are spin basis vectors defined as:



We can then show how each operator acts on |a),|5)

$:la) = 5a)

8:18) = —318)
8 la) = 31B)
8. 18) = 3 |a)
Syla) = 3 18)
8y 18) = =5 la)

Note that while |a) , |3) are eigenfunctions of s2, 5., they are not eigenfunctions
of 54, 8y

Can also define step up and down operators:

S, =5, +1i5,

S_ =4, —is,

which respectively increase or decrease the value of ms by 1. We can show the
action of Sy, S_ on the basis vectors |a),|5)

Sy la) = (32 +1i8y) |a) (1)
= 5, |0) + 5y |a) 2)
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1 1
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=0 (5)
Sy 18) = (32 +15,) |B) (6)
= 5, |B) — 8y |B) (7)

1 1
=5l + 5l (8)
= |o) 9)
S_la) = (82 —i5y) o) (10)
= 5, |0) + 5y |a) (11)

1 1
=518 +518) (12)
= [B) (13)



S_18) = 5, |B) — 8y |8) (14)
1 1
=5 la) = 5 la) (15)

=0 (16)

We can use the step up/down operators to rewrite s2:

=845 +5 (17)

= (8, +18,)(82 — 18,) + 18,8, — 18,8, + 57 (18)

= 5,8 +i(8.8, — 5,8,) + &2 (19)

= 5,8 +ildg, 8] + 5 (20)

=845 +i%5, + &2 (21)

=8,.5 —5, +4 (22)

and also
2 _ & & a a2
s°=5_5;+3§,+3; (23)

Finally, we can define analogous multi-electron versions of all of the above op-
erators.
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=L L, +L,+L2 (27)



Where each sum runs over all electrons in the system.

2 Basis sets

In general, a basis set of 2K spin functions can be built in two distinct ways.
In the restricted formalism, there is a set of K spatial functions, which are each
multiplied by an «a or a 8 to create 2K spin functions:

{X17 X250y X2K717X2K} = {¢17 /th reey wa(Z}K} (28)
= {¢1a7¢1ﬁ7~-«7¢1{0¢7¢1(5} (29)

Note that this basis set is orthonormal if the set of spatial functions {1, ..., ¥k }
is orthonormal due to «, 8 being orthogonal.

In the unrestricted formalism, the 2i and 2i — 1 spin basis functions are not
constrained to have the same spatial component. Te.

{X17 X2y ey X2K—17X2K} = {¢?71/;16’ seey Tﬁ?(ﬂ/;?(} (30)
= (U Y] B, ... Vo, Vi B} (31)

Where
B = {yf, ..., ¥%}
Bf = {7 . 4}

both form orthonormal basis sets. ¢ and 1//.3 need not be orthogonal for the
overall basis set to be orthonormal (again due to (a|8) = 0). We define the
components of the spin overlap matrix S as

S = (el

From this, we can see that the restricted approximation is a special case where
S8 is the identity matrix. Ie.

(W) = 65
and thus
b =P =y

Finally, we note the constraints on the matrix S%. We first assume that {1%}
and {wlﬂ} span the same space. Ie:

Sp({vs}) = Sp({we U {w!'}) = Sp({¥]})



where Sp is the span. In that case, in combination with the fact that both {¢}
and {wzﬂ } are orthonormal, we can expand any function ¥ as a unique linear
combination of 1/}? . It is trivial to show that the coefficients of this expansion
are the elements of the i*” row of S*7:

K
ey = [l (f ) (32)
.
=382 1wl (33)
"
=82 wh) (34)
J
Using this equality,
K K
1= () = > 5o Wl 3857 |vy) (35)
l
vk
=3 sPsa? wl vy (36)
j !
X K
- Z Z S5 S50 65 (37)
1 l
X
=Y s5rss (38)
IJ{ 2
=> s (39)
i

Ie. the sum of the squared elements of any row in S®? is exactly equal to 1.
Without loss of generality, this can also be proven for each column (by taking
the transpose of S*#), and noting that spatial wave functions are real).

3 Derivations

3.1 L,

First, we prove that for any single determinant |¥),



N® - NP

L,|0) = 5

¥) (40)

Ie. any single determinant is an eigenfunction of £, with eigenvalue of & QEN ’ ,

where N is the number of occupied « orbitals and [ is the number of occupied
B orbitals.Using second quantization,

2K 2K
Lo10) =" " (xpl 52 Ixq) abag |¥) (41)
2 21
=D eyl 82 [¥)eng) alag |¥) (42)
-
=N (@) (np 8= Ing) alag | ) (43)
P q
1 2K Kq 2K Kp
= 5[2 Z (e ‘7/)3> (1p| ) a;aq - Z Z (e |¢5> (1p] 8) a;aq] |¥)
P q P q
(44)
1 2K K, 2K Kg
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1 Ko Ko Kpg Kgp
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1 K, Ka Kg Kg
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P q P q
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Here, we note that the terms with a a, operator annihilating a virtual orbital
will vanish:



3.2 Spin contamination

Want to find the expectation value of £2 for a determinant in general. Ie.

(L2 vmr = (V] L% |W)
=(V|L Ly + L.+ L2|T)

= (V| LoLy W) + (W] L. [) + (U] L2 W)

Using the result from section 3.1,

_ Na—Ng

(W] L. |0) = =

for a normalized determinant |¥). Similarly,

For the first term, we again use second quantization:
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2K

(WIL_Ly|0) = (Grmpl S— [Wiong) (b ne| Sy 192 ns) (U] abagalas |¥)

pqrs

(61)
2K R
= (W) (npl 5— |ng) (W7 [2°) (] S |ns) (W] afagala, | )
pqrs
(62)
Terms with 7, = 8 and 1, = « vanish due to the step down/up operators
2K K, Kg A .
=D DO el (mpl S— la) (W |w0F) (me] S 18) (¥| afagalas [) (63)
pr q s
2K K. Kg
=N gy (mplB) (@7 [9F) (nela) (9| afagatas | ) (64)
proq s
Np = &, 1Ng = 3 vanish.
Ks K,
=22 Wplvg) weled) (Plajagala, |9) (65)
ps gqr
Ks Ko
=223 5w (Wlaegalos |9) (66)
Terms with p, s indices over virtual orbitals vanish
Ng Ko
=33 8507 528 (W afagata; |0) (67)
i qr
Nﬂ Ko
=338 (W] (81 — agal) (6,5 — aja) W) (68)
i qr
Nﬁ Ko
=33 8077508 (W agalajal ) (69)
Zj qr

Terms with ¢, indices over occupied orbitals vanish



Ng Ko—No

=3 > Sa sy (Wl asalagal ) (70)

(%) ab

Here, one can get an intuition about what £1 does. For £ on the right, there
is an excitation from each occupied (8 orbital j to each virtual « orbital a,
multiplied by the overlap between the spatial components of j and a. Using
Wick’s theorem:

Ng Ko—Ng

:Z Z Saﬁ SO‘B \I/|aj aba —ébaaja —(5wa ap + 0padij ) (71)
iJ ab
Ng Ko—Ng .

=3 D S Sy swdij (| W) (72)
iJ ab
Ng Ko—Ng .

DI 2
NB Ko—Nq

fz Z 15282 (74)

Using the constraint derived in section 2,

K—N,
1= Z ik +Z|Sa5 (75)
(76)
Then
Kao—Ng
SISl Z|5a5 (77)
and



Npg Ko—Nao

SO>S = Zlstaﬁ
J a

Finally, putting it all together,

N, Ng
N, — N N, — N
() L2 0) = (=25 —2) + ’3+Nﬁ—ZZ|S

N, N[ﬂ
N, — N, N, — N, o
= ( ) 5+Nﬂ—§§\55

For the case of RHF, we can see that Eq. 81 reduces to

No—Ng  No— N N

(5 + )= +Nﬁfzz(sij
No Ns

N, —N N, —N

= (=524 5+Nﬁ—221

_ No—Ng . N,—Ng

= (F 5 ) +NBfZ1

N,—N N,—N

= (=5 CA Y 5 5 4+ Ng— Ng

N, —N N,—N

= (= 24 5 = (L rur

At which point we arrive at the equation given in Szabo and Ostlund [1]:

N, Ng

(W] L2 W) = (£2) g + Ny — ZZIS“B
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