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1 Operators

We define the spin angular momentum of a particle as a vector operator s⃗:

s⃗ =

ŝxŝy
ŝz


and ŝ2 as the scalar operator:

s2 = s⃗ · s⃗ = ŝ2x + ŝ2y + ŝ2z

The components of the spin angular momentum vector satisfy the commutation
relations:

[ŝx, ŝy] = iŝz

[ŝy, ŝz] = iŝx

[ŝz, ŝx] = iŝy

Because these operators do not commute (cannot be measured simultaneously),
the complete spin state of a particle can be described by the simultaneous eigen-
functions of s2 and a component of s⃗, usually ŝz. Therefore, define a spin vector
to be of the following form:

|s,ms⟩

where s,ms are quantum numbers describing total spin and the z component
of the spin, defined by their respective operators’ action on the wave func-
tion:

s2 |s,ms⟩ = s(s+ 1) |s,ms⟩

ŝz |s,ms⟩ = ms |s,ms⟩

|α⟩ , |β⟩ are spin basis vectors defined as:

|α⟩ ≡ |12 ,
1
2 ⟩

|β⟩ ≡ | 12 ,−
1
2 ⟩
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We can then show how each operator acts on |α⟩ , |β⟩

ŝz |α⟩ = 1
2 |α⟩

ŝz |β⟩ = − 1
2 |β⟩

ŝx |α⟩ = 1
2 |β⟩

ŝx |β⟩ = 1
2 |α⟩

ŝy |α⟩ = i
2 |β⟩

ŝy |β⟩ = − i
2 |α⟩

Note that while |α⟩ , |β⟩ are eigenfunctions of s2, ŝz, they are not eigenfunctions
of ŝx, ŝy

Can also define step up and down operators:

Ŝ+ ≡ ŝx + iŝy

Ŝ− ≡ ŝx − iŝy

which respectively increase or decrease the value of ms by 1. We can show the
action of Ŝ+, Ŝ− on the basis vectors |α⟩ , |β⟩

Ŝ+ |α⟩ = (ŝx + iŝy) |α⟩ (1)

= ŝx |α⟩+ iŝy |α⟩ (2)

=
1

2
|β⟩+ i2

2
|β⟩ (3)

=
1

2
|β⟩ − 1

2
|β⟩ (4)

= 0 (5)

Ŝ+ |β⟩ = (ŝx + iŝy) |β⟩ (6)

= ŝx |β⟩ − iŝy |β⟩ (7)

=
1

2
|α⟩+ 1

2
|α⟩ (8)

= |α⟩ (9)

Ŝ− |α⟩ = (ŝx − iŝy) |α⟩ (10)

= ŝx |α⟩+ iŝy |α⟩ (11)

=
1

2
|β⟩+ 1

2
|β⟩ (12)

= |β⟩ (13)
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Ŝ− |β⟩ = ŝx |β⟩ − iŝy |β⟩ (14)

=
1

2
|α⟩ − 1

2
|α⟩ (15)

= 0 (16)

We can use the step up/down operators to rewrite s2:

s2 = ŝ2x + ŝ2y + ŝ2z (17)

= (ŝx + iŝy)(ŝx − iŝy) + iŝxŝy − iŝy ŝx + ŝ2z (18)

= Ŝ+Ŝ− + i(ŝxŝy − ŝy ŝx) + ŝ2z (19)

= Ŝ+Ŝ− + i[ŝx, ŝy] + ŝ2z (20)

= Ŝ+Ŝ− + i2ŝz + ŝ2z (21)

= Ŝ+Ŝ− − ŝz + ŝ2z (22)

and also

s2 = Ŝ−Ŝ+ + ŝz + ŝ2z (23)

Finally, we can define analogous multi-electron versions of all of the above op-
erators.

L⃗ =

N∑
i

s⃗(i)

Lµ ≡
N∑
i

Ŝµ(i)

for µ ∈ {x, y, z}

L± =

N∑
i

Ŝ±(i)

L2 = L⃗ · L⃗ (24)

=

N∑
i

N∑
j

s⃗(i) · s⃗(j) (25)

= L+L− − Lz + L2
z (26)

= L−L+ + Lz + L2
z (27)
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Where each sum runs over all electrons in the system.

2 Basis sets

In general, a basis set of 2K spin functions can be built in two distinct ways.
In the restricted formalism, there is a set of K spatial functions, which are each
multiplied by an α or a β to create 2K spin functions:

{χ1, χ2, ..., χ2K−1, χ2K} = {ψ1, ψ̄1, ..., ψK , ψ̄K} (28)

= {ψ1α,ψ1β, ..., ψKα,ψKβ} (29)

Note that this basis set is orthonormal if the set of spatial functions {ψ1, ..., ψK}
is orthonormal due to α, β being orthogonal.

In the unrestricted formalism, the 2i and 2i − 1 spin basis functions are not
constrained to have the same spatial component. Ie.

{χ1, χ2, ..., χ2K−1, χ2K} = {ψα
1 , ψ̄

β
1 , ..., ψ

α
K , ψ̄

β
K} (30)

= {ψα
1 α,ψ

β
1 β, ..., ψ

α
Kα,ψ

β
Kβ} (31)

Where

Bα = {ψα
1 , ..., ψ

α
K}

Bβ = {ψβ
1 , ..., ψ

β
K}

both form orthonormal basis sets. ψα
i and ψβ

j need not be orthogonal for the
overall basis set to be orthonormal (again due to ⟨α|β⟩ = 0). We define the
components of the spin overlap matrix Sαβ as

Sαβ
ij = ⟨ψα

i |ψ
β
j ⟩

From this, we can see that the restricted approximation is a special case where
Sαβ is the identity matrix. Ie.

⟨ψα
i |ψ

β
j ⟩ = δij

and thus

ψα
i = ψβ

i = ψi

Finally, we note the constraints on the matrix Sαβ . We first assume that {ψα
i }

and {ψβ
i } span the same space. Ie:

Sp({ψα
i }) = Sp({ψα

i } ∪ {ψβ
i }) = Sp({ψβ

i })
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where Sp is the span. In that case, in combination with the fact that both {ψα
i }

and {ψβ
i } are orthonormal, we can expand any function ψα

i as a unique linear

combination of ψβ
j . It is trivial to show that the coefficients of this expansion

are the elements of the ith row of Sαβ :

|ψα
i ⟩ =

K∑
j

|ψβ
j ⟩ ⟨ψ

β
j |ψ

α
i ⟩ (32)

=

K∑
j

Sαβ
ij

∗
|ψβ

j ⟩ (33)

=

K∑
j

Sαβ
ij |ψβ

j ⟩ (34)

Using this equality,

1 = ⟨ψα
i |ψα

i ⟩ =
K∑
j

Sαβ
ij ⟨ψβ

j |
K∑
l

Sαβ
il |ψβ

l ⟩ (35)

=

K∑
j

K∑
l

Sαβ
ij S

αβ
il ⟨ψβ

j |ψ
β
l ⟩ (36)

=

K∑
j

K∑
l

Sαβ
ij S

αβ
il δjl (37)

=

K∑
j

Sαβ
ij S

αβ
ij (38)

=

K∑
j

Sαβ
ij

2
(39)

Ie. the sum of the squared elements of any row in Sαβ is exactly equal to 1.
Without loss of generality, this can also be proven for each column (by taking
the transpose of Sαβ), and noting that spatial wave functions are real).

3 Derivations

3.1 Lz

First, we prove that for any single determinant |Ψ⟩,
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Lz |Ψ⟩ = Nα −Nβ

2
|Ψ⟩ (40)

Ie. any single determinant is an eigenfunction of Lz with eigenvalue of Nα−Nβ

2 ,
where Nα is the number of occupied α orbitals and β is the number of occupied
β orbitals.Using second quantization,

Lz |Ψ⟩ =
2K∑
p

2K∑
q

⟨χp| ŝz |χq⟩ a†paq |Ψ⟩ (41)

=

2K∑
p

2K∑
q

⟨ψηp
p ηp| ŝz |ψηq

q ηq⟩ a†paq |Ψ⟩ (42)

=

2K∑
p

2K∑
q

⟨ψηp
p |ψηq

q ⟩ ⟨ηp| ŝz |ηq⟩ a†paq |Ψ⟩ (43)

=
1

2
[

2K∑
p

Kα∑
q

⟨ψηp
p |ψα

q ⟩ ⟨ηp|α⟩ a†paq −
2K∑
p

Kβ∑
q

⟨ψηp
p |ψβ

q ⟩ ⟨ηp|β⟩ a†paq] |Ψ⟩

(44)

=
1

2
[

2K∑
p

Kα∑
q

⟨ψηp
p |ψα

q ⟩ δηpαa
†
paq −

2K∑
p

Kβ∑
q

⟨ψηp
p |ψβ

q ⟩ δηpβa
†
paq] |Ψ⟩ (45)

=
1

2
[

Kα∑
p

Kα∑
q

⟨ψα
p |ψα

q ⟩ a†paq −
Kβ∑
p

Kβ∑
q

⟨ψβ
p |ψβ

q ⟩ a†paq] |Ψ⟩ (46)

=
1

2
[

Kα∑
p

Kα∑
q

δpqa
†
paq −

Kβ∑
p

Kβ∑
q

δpqa
†
paq] |Ψ⟩ (47)

=
1

2
[

Kα∑
p

a†pap −
Kβ∑
p

a†pap] |Ψ⟩ (48)

(49)

Here, we note that the terms with a ap operator annihilating a virtual orbital
will vanish:
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=
1

2
[

Nα∑
i

a†iai −
Nβ∑
i

a†iai] |Ψ⟩ (50)

=
1

2
[

Nα∑
i

(δii − aia
†
i )−

Nβ∑
i

(δii − aia
†
i )] |Ψ⟩ (51)

=
1

2
[

Nα∑
i

δii −
Nβ∑
i

δii] |Ψ⟩ (52)

=
1

2
[Nα −Nβ ] |Ψ⟩ (53)

=
Nα −Nβ

2
|Ψ⟩ (54)

3.2 Spin contamination

Want to find the expectation value of L2 for a determinant in general. Ie.

⟨L2⟩UHF = ⟨Ψ| L2 |Ψ⟩ (55)

= ⟨Ψ| L−L+ + Lz + L2
z |Ψ⟩ (56)

= ⟨Ψ| L−L+ |Ψ⟩+ ⟨Ψ| Lz |Ψ⟩+ ⟨Ψ| L2
z |Ψ⟩ (57)

Using the result from section 3.1,

⟨Ψ| Lz |Ψ⟩ = Nα −Nβ

2
(58)

for a normalized determinant |Ψ⟩. Similarly,

⟨Ψ| L2 |Ψ⟩ = Nα −Nβ

2
⟨Ψ| L |Ψ⟩ (59)

= (
Nα −Nβ

2
)2 (60)

For the first term, we again use second quantization:
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⟨Ψ| L−L+ |Ψ⟩ =
2K∑
pqrs

⟨ψηp
p ηp| Ŝ− |ψηq

q ηq⟩ ⟨ψηr
r ηr| Ŝ+ |ψηs

s ηs⟩ ⟨Ψ| a†paqa†ras |Ψ⟩

(61)

=

2K∑
pqrs

⟨ψηp
p |ψηq

q ⟩ ⟨ηp| Ŝ− |ηq⟩ ⟨ψηr
r |ψηs

s ⟩ ⟨ηr| Ŝ+ |ηs⟩ ⟨Ψ| a†paqa†ras |Ψ⟩

(62)

Terms with ηq = β and ηs = α vanish due to the step down/up operators

=

2K∑
pr

Kα∑
q

Kβ∑
s

⟨ψηp
p |ψα

q ⟩ ⟨ηp| Ŝ− |α⟩ ⟨ψηr
r |ψβ

s ⟩ ⟨ηr| Ŝ+ |β⟩ ⟨Ψ| a†paqa†ras |Ψ⟩ (63)

=

2K∑
pr

Kα∑
q

Kβ∑
s

⟨ψηp
p |ψα

q ⟩ ⟨ηp|β⟩ ⟨ψηr
r |ψβ

s ⟩ ⟨ηr|α⟩ ⟨Ψ| a†paqa†ras |Ψ⟩ (64)

ηp = α, ηq = β vanish.

=

Kβ∑
ps

Kα∑
qr

⟨ψβ
p |ψα

q ⟩ ⟨ψα
r |ψβ

s ⟩ ⟨Ψ| a†paqa†ras |Ψ⟩ (65)

=

Kβ∑
ps

Kα∑
qr

Sαβ
qp

∗
Sαβ
rs ⟨Ψ| a†paqa†ras |Ψ⟩ (66)

Terms with p, s indices over virtual orbitals vanish

=

Nβ∑
ij

Kα∑
qr

Sαβ
qi

∗
Sαβ
rj ⟨Ψ| a†iaqa

†
raj |Ψ⟩ (67)

=

Nβ∑
ij

Kα∑
qr

Sαβ
qi

∗
Sαβ
rj ⟨Ψ| (δiq − aqa

†
i )(δrj − aja

†
r) |Ψ⟩ (68)

=

Nβ∑
ij

Kα∑
qr

Sαβ
qi

∗
Sαβ
rj ⟨Ψ| aqa†iaja

†
r |Ψ⟩ (69)

Terms with q, r indices over occupied orbitals vanish
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=

Nβ∑
ij

Kα−Nα∑
ab

Sαβ
ai

∗
Sαβ
bj ⟨Ψ| aaa†iaja

†
b |Ψ⟩ (70)

Here, one can get an intuition about what L± does. For L+ on the right, there
is an excitation from each occupied β orbital j to each virtual α orbital a,
multiplied by the overlap between the spatial components of j and a. Using
Wick’s theorem:

=

Nβ∑
ij

Kα−Nα∑
ab

Sαβ
ai

∗
Sαβ
bj ⟨Ψ| aja†aaba

†
i − δbaaja

†
i − δija

†
aab + δbaδij |Ψ⟩ (71)

=

Nβ∑
ij

Kα−Nα∑
ab

Sαβ
ai

∗
Sαβ
bj δabδij ⟨Ψ| |Ψ⟩ (72)

=

Nβ∑
i

Kα−Nα∑
a

Sαβ
ai

∗
Sαβ
ai (73)

=

Nβ∑
i

Kα−Nα∑
a

|Sαβ
ai |

2 (74)

Using the constraint derived in section 2,

1 =

K−Nα∑
i

|Sαβ
ij |2 +

Nα∑
i

|Sαβ
ij |2 (75)

(76)

Then

Kα−Nα∑
i

|Sαβ
ij |2 = 1−

Nα∑
i

|Sαβ
ij |2 (77)

and
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Nβ∑
j

Kα−Nα∑
a

|Sαβ
ai |

2 =

Nβ∑
j

(1−
Nα∑
i

|Sαβ
ij |2) (78)

= Nβ −
Nα∑
i

Nβ∑
j

|Sαβ
ij |2 (79)

Finally, putting it all together,

⟨Ψ| L2 |Ψ⟩ = (
Nα −Nβ

2
)2 +

Nα −Nβ

2
+Nβ −

Nα∑
i

Nβ∑
j

|Sαβ
ij |2 (80)

= (
Nα −Nβ

2
+ 1)

Nα −Nβ

2
+Nβ −

Nα∑
i

Nβ∑
j

|Sαβ
ij |2 (81)

For the case of RHF, we can see that Eq. 81 reduces to

(
Nα −Nβ

2
+ 1)

Nα −Nβ

2
+Nβ −

Nα∑
i

Nβ∑
j

δ2ij (82)

= (
Nα −Nβ

2
+ 1)

Nα −Nβ

2
+Nβ −

Nα∑
i

Nβ∑
j

1 (83)

= (
Nα −Nβ

2
+ 1)

Nα −Nβ

2
+Nβ −

Nβ∑
j

1 (84)

= (
Nα −Nβ

2
+ 1)

Nα −Nβ

2
+Nβ −Nβ (85)

= (
Nα −Nβ

2
+ 1)

Nα −Nβ

2
≡ ⟨L2⟩RHF (86)

At which point we arrive at the equation given in Szabo and Ostlund [1]:

⟨Ψ| L2 |Ψ⟩ = ⟨L2⟩RHF +Nβ −
Nα∑
i

Nβ∑
j

|Sαβ
ij |2 (87)
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